Abstract:Machine learning has been widely adopted in biomedical research, fueled by the increasing availability of data. However, integrating datasets across institutions is challenging due to legal restrictions and data governance complexities. Federated learning allows the direct, privacy preserving training of machine learning models using geographically distributed datasets, but faces the challenge of how to appropriately control for covariate effects. The naive implementation of conventional covariate control methods in federated learning scenarios is often impractical due to the substantial communication costs, particularly with high-dimensional data. To address this issue, we introduce dsLassoCov, a machine learning approach designed to control for covariate effects and allow an efficient training in federated learning. In biomedical analysis, this allow the biomarker selection against the confounding effects. Using simulated data, we demonstrate that dsLassoCov can efficiently and effectively manage confounding effects during model training. In our real-world data analysis, we replicated a large-scale Exposome analysis using data from six geographically distinct databases, achieving results consistent with previous studies. By resolving the challenge of covariate control, our proposed approach can accelerate the application of federated learning in large-scale biomedical studies.
Abstract:Knowledge-aware sequence to sequence generation tasks such as document question answering and abstract summarization typically requires two types of knowledge: encoded parametric knowledge and retrieved contextual information. Previous work show improper correlation between parametric knowledge and answers in the training set could cause the model ignore input information at test time, resulting in un-desirable model behaviour such as over-stability and hallucination. In this work, we argue that hallucination could be mitigated via explicit correlation between input source and generated content. We focus on a typical example of hallucination, entity-based knowledge conflicts in question answering, where correlation of entities and their description at training time hinders model behaviour during inference.
Abstract:The works of Gatys et al. demonstrated the capability of Convolutional Neural Networks (CNNs) in creating artistic style images. This process of transferring content images in different styles is called Neural Style Transfer (NST). In this paper, we re-implement image-based NST, fast NST, and arbitrary NST. We also explore to utilize ResNet with activation smoothing in NST. Extensive experimental results demonstrate that smoothing transformation can greatly improve the quality of stylization results.
Abstract:Multi-task learning (MTL) is a learning paradigm that enables the simultaneous training of multiple communicating algorithms. Although MTL has been successfully applied to ether regression or classification tasks alone, incorporating mixed types of tasks into a unified MTL framework remains challenging, primarily due to variations in the magnitudes of losses associated with different tasks. This challenge, particularly evident in MTL applications with joint feature selection, often results in biased selections. To overcome this obstacle, we propose a provable loss weighting scheme that analytically determines the optimal weights for balancing regression and classification tasks. This scheme significantly mitigates the otherwise biased feature selection. Building upon this scheme, we introduce MTLComb, an MTL algorithm and software package encompassing optimization procedures, training protocols, and hyperparameter estimation procedures. MTLComb is designed for learning shared predictors among tasks of mixed types. To showcase the efficacy of MTLComb, we conduct tests on both simulated data and biomedical studies pertaining to sepsis and schizophrenia.
Abstract:Recently, Large Language Models (LLMs) have drawn significant attention due to their outstanding reasoning capabilities and extensive knowledge repository, positioning them as superior in handling various natural language processing tasks compared to other language models. In this paper, we present a preliminary investigation into the potential of LLMs in fact-checking. This study aims to comprehensively evaluate various LLMs in tackling specific fact-checking subtasks, systematically evaluating their capabilities, and conducting a comparative analysis of their performance against pre-trained and state-of-the-art low-parameter models. Experiments demonstrate that LLMs achieve competitive performance compared to other small models in most scenarios. However, they encounter challenges in effectively handling Chinese fact verification and the entirety of the fact-checking pipeline due to language inconsistencies and hallucinations. These findings underscore the need for further exploration and research to enhance the proficiency of LLMs as reliable fact-checkers, unveiling the potential capability of LLMs and the possible challenges in fact-checking tasks.
Abstract:Large Language Models (LLMs) have garnered significant attention for their powerful ability in natural language understanding and reasoning. In this paper, we present a comprehensive empirical study to explore the performance of LLMs on misinformation detection tasks. This study stands as the pioneering investigation into the understanding capabilities of multiple LLMs regarding both content and propagation across social media platforms. Our empirical studies on five misinformation detection datasets show that LLMs with diverse prompts achieve comparable performance in text-based misinformation detection but exhibit notably constrained capabilities in comprehending propagation structure compared to existing models in propagation-based misinformation detection. Besides, we further design four instruction-tuned strategies to enhance LLMs for both content and propagation-based misinformation detection. These strategies boost LLMs to actively learn effective features from multiple instances or hard instances, and eliminate irrelevant propagation structures, thereby achieving better detection performance. Extensive experiments further demonstrate LLMs would play a better capacity in content and propagation structure under these proposed strategies and achieve promising detection performance. These findings highlight the potential ability of LLMs to detect misinformation.
Abstract:The recommendation algorithm based on knowledge graphs is at a relatively mature stage. However, there are still some problems in the recommendation of specific areas. For example, in the tourism field, selecting suitable tourist attraction attributes process is complicated as the recommendation basis for tourist attractions. In this paper, we propose the improved Attention Knowledge Graph Convolution Network model, named ($Att-KGCN$), which automatically discovers the neighboring entities of the target scenic spot semantically. The attention layer aggregates relatively similar locations and represents them with an adjacent vector. Then, according to the tourist's preferred choices, the model predicts the probability of similar spots as a recommendation system. A knowledge graph dataset of tourist attractions used based on tourism data on Socotra Island-Yemen. Through experiments, it is verified that the Attention Knowledge Graph Convolution Network has a good effect on the recommendation of tourist attractions and can make more recommendations for tourists' choices.
Abstract:Deep Neural Networks (DNNs) are witnessing increased adoption in multiple domains owing to their high accuracy in solving real-world problems. However, this high accuracy has been achieved by building deeper networks, posing a fundamental challenge to the low latency inference desired by user-facing applications. Current low latency solutions trade-off on accuracy or fail to exploit the inherent temporal locality in prediction serving workloads. We observe that caching hidden layer outputs of the DNN can introduce a form of late-binding where inference requests only consume the amount of computation needed. This enables a mechanism for achieving low latencies, coupled with an ability to exploit temporal locality. However, traditional caching approaches incur high memory overheads and lookup latencies, leading us to design learned caches - caches that consist of simple ML models that are continuously updated. We present the design of GATI, an end-to-end prediction serving system that incorporates learned caches for low-latency DNN inference. Results show that GATI can reduce inference latency by up to 7.69X on realistic workloads.