Abstract:Recent research has shown that pre-trained vision-language models are effective at identifying out-of-distribution (OOD) samples by using negative labels as guidance. However, employing consistent negative labels across different OOD datasets often results in semantic misalignments, as these text labels may not accurately reflect the actual space of OOD images. To overcome this issue, we introduce \textit{adaptive negative proxies}, which are dynamically generated during testing by exploring actual OOD images, to align more closely with the underlying OOD label space and enhance the efficacy of negative proxy guidance. Specifically, our approach utilizes a feature memory bank to selectively cache discriminative features from test images, representing the targeted OOD distribution. This facilitates the creation of proxies that can better align with specific OOD datasets. While task-adaptive proxies average features to reflect the unique characteristics of each dataset, the sample-adaptive proxies weight features based on their similarity to individual test samples, exploring detailed sample-level nuances. The final score for identifying OOD samples integrates static negative labels with our proposed adaptive proxies, effectively combining textual and visual knowledge for enhanced performance. Our method is training-free and annotation-free, and it maintains fast testing speed. Extensive experiments across various benchmarks demonstrate the effectiveness of our approach, abbreviated as AdaNeg. Notably, on the large-scale ImageNet benchmark, our AdaNeg significantly outperforms existing methods, with a 2.45\% increase in AUROC and a 6.48\% reduction in FPR95. Codes are available at \url{https://github.com/YBZh/OpenOOD-VLM}.
Abstract:This paper presents the Video Super-Resolution (SR) Quality Assessment (QA) Challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2024. The task of this challenge was to develop an objective QA method for videos upscaled 2x and 4x by modern image- and video-SR algorithms. QA methods were evaluated by comparing their output with aggregate subjective scores collected from >150,000 pairwise votes obtained through crowd-sourced comparisons across 52 SR methods and 1124 upscaled videos. The goal was to advance the state-of-the-art in SR QA, which had proven to be a challenging problem with limited applicability of traditional QA methods. The challenge had 29 registered participants, and 5 teams had submitted their final results, all outperforming the current state-of-the-art. All data, including the private test subset, has been made publicly available on the challenge homepage at https://challenges.videoprocessing.ai/challenges/super-resolution-metrics-challenge.html
Abstract:Out-of-distribution (OOD) detection is crucial for model reliability, as it identifies samples from unknown classes and reduces errors due to unexpected inputs. Vision-Language Models (VLMs) such as CLIP are emerging as powerful tools for OOD detection by integrating multi-modal information. However, the practical application of such systems is challenged by manual prompt engineering, which demands domain expertise and is sensitive to linguistic nuances. In this paper, we introduce Label-driven Automated Prompt Tuning (LAPT), a novel approach to OOD detection that reduces the need for manual prompt engineering. We develop distribution-aware prompts with in-distribution (ID) class names and negative labels mined automatically. Training samples linked to these class labels are collected autonomously via image synthesis and retrieval methods, allowing for prompt learning without manual effort. We utilize a simple cross-entropy loss for prompt optimization, with cross-modal and cross-distribution mixing strategies to reduce image noise and explore the intermediate space between distributions, respectively. The LAPT framework operates autonomously, requiring only ID class names as input and eliminating the need for manual intervention. With extensive experiments, LAPT consistently outperforms manually crafted prompts, setting a new standard for OOD detection. Moreover, LAPT not only enhances the distinction between ID and OOD samples, but also improves the ID classification accuracy and strengthens the generalization robustness to covariate shifts, resulting in outstanding performance in challenging full-spectrum OOD detection tasks. Codes are available at \url{https://github.com/YBZh/LAPT}.
Abstract:By leveraging the text-to-image diffusion priors, score distillation can synthesize 3D contents without paired text-3D training data. Instead of spending hours of online optimization per text prompt, recent studies have been focused on learning a text-to-3D generative network for amortizing multiple text-3D relations, which can synthesize 3D contents in seconds. However, existing score distillation methods are hard to scale up to a large amount of text prompts due to the difficulties in aligning pretrained diffusion prior with the distribution of rendered images from various text prompts. Current state-of-the-arts such as Variational Score Distillation finetune the pretrained diffusion model to minimize the noise prediction error so as to align the distributions, which are however unstable to train and will impair the model's comprehension capability to numerous text prompts. Based on the observation that the diffusion models tend to have lower noise prediction errors at earlier timesteps, we propose Asynchronous Score Distillation (ASD), which minimizes the noise prediction error by shifting the diffusion timestep to earlier ones. ASD is stable to train and can scale up to 100k prompts. It reduces the noise prediction error without changing the weights of pre-trained diffusion model, thus keeping its strong comprehension capability to prompts. We conduct extensive experiments across different 2D diffusion models, including Stable Diffusion and MVDream, and text-to-3D generators, including Hyper-iNGP, 3DConv-Net and Triplane-Transformer. The results demonstrate ASD's effectiveness in stable 3D generator training, high-quality 3D content synthesis, and its superior prompt-consistency, especially under large prompt corpus.
Abstract:ChatGPT has achieved remarkable success in natural language understanding. Considering that recommendation is indeed a conversation between users and the system with items as words, which has similar underlying pattern with ChatGPT, we design a new chat framework in item index level for the recommendation task. Our novelty mainly contains three parts: model, training and inference. For the model part, we adopt Generative Pre-training Transformer (GPT) as the sequential recommendation model and design a user modular to capture personalized information. For the training part, we adopt the two-stage paradigm of ChatGPT, including pre-training and fine-tuning. In the pre-training stage, we train GPT model by auto-regression. In the fine-tuning stage, we train the model with prompts, which include both the newly-generated results from the model and the user's feedback. For the inference part, we predict several user interests as user representations in an autoregressive manner. For each interest vector, we recall several items with the highest similarity and merge the items recalled by all interest vectors into the final result. We conduct experiments with both offline public datasets and online A/B test to demonstrate the effectiveness of our proposed method.
Abstract:With the emergence of pre-trained vision-language models like CLIP, how to adapt them to various downstream classification tasks has garnered significant attention in recent research. The adaptation strategies can be typically categorized into three paradigms: zero-shot adaptation, few-shot adaptation, and the recently-proposed training-free few-shot adaptation. Most existing approaches are tailored for a specific setting and can only cater to one or two of these paradigms. In this paper, we introduce a versatile adaptation approach that can effectively work under all three settings. Specifically, we propose the dual memory networks that comprise dynamic and static memory components. The static memory caches training data knowledge, enabling training-free few-shot adaptation, while the dynamic memory preserves historical test features online during the testing process, allowing for the exploration of additional data insights beyond the training set. This novel capability enhances model performance in the few-shot setting and enables model usability in the absence of training data. The two memory networks employ the same flexible memory interactive strategy, which can operate in a training-free mode and can be further enhanced by incorporating learnable projection layers. Our approach is tested across 11 datasets under the three task settings. Remarkably, in the zero-shot scenario, it outperforms existing methods by over 3\% and even shows superior results against methods utilizing external training data. Additionally, our method exhibits robust performance against natural distribution shifts. Codes are available at \url{https://github.com/YBZh/DMN}.
Abstract:Blind video quality assessment (BVQA) plays a pivotal role in evaluating and improving the viewing experience of end-users across a wide range of video-based platforms and services. Contemporary deep learning-based models primarily analyze the video content in its aggressively downsampled format, while being blind to the impact of actual spatial resolution and frame rate on video quality. In this paper, we propose a modular BVQA model, and a method of training it to improve its modularity. Specifically, our model comprises a base quality predictor, a spatial rectifier, and a temporal rectifier, responding to the visual content and distortion, spatial resolution, and frame rate changes on video quality, respectively. During training, spatial and temporal rectifiers are dropped out with some probabilities so as to make the base quality predictor a standalone BVQA model, which should work better with the rectifiers. Extensive experiments on both professionally-generated content and user generated content video databases show that our quality model achieves superior or comparable performance to current methods. Furthermore, the modularity of our model offers a great opportunity to analyze existing video quality databases in terms of their spatial and temporal complexities. Last, our BVQA model is cost-effective to add other quality-relevant video attributes such as dynamic range and color gamut as additional rectifiers.
Abstract:Rotation estimation of high precision from an RGB-D object observation is a huge challenge in 6D object pose estimation, due to the difficulty of learning in the non-linear space of SO(3). In this paper, we propose a novel rotation estimation network, termed as VI-Net, to make the task easier by decoupling the rotation as the combination of a viewpoint rotation and an in-plane rotation. More specifically, VI-Net bases the feature learning on the sphere with two individual branches for the estimates of two factorized rotations, where a V-Branch is employed to learn the viewpoint rotation via binary classification on the spherical signals, while another I-Branch is used to estimate the in-plane rotation by transforming the signals to view from the zenith direction. To process the spherical signals, a Spherical Feature Pyramid Network is constructed based on a novel design of SPAtial Spherical Convolution (SPA-SConv), which settles the boundary problem of spherical signals via feature padding and realizesviewpoint-equivariant feature extraction by symmetric convolutional operations. We apply the proposed VI-Net to the challenging task of category-level 6D object pose estimation for predicting the poses of unknown objects without available CAD models; experiments on the benchmarking datasets confirm the efficacy of our method, which outperforms the existing ones with a large margin in the regime of high precision.
Abstract:Point cloud sequences are commonly used to accurately detect 3D objects in applications such as autonomous driving. Current top-performing multi-frame detectors mostly follow a Detect-and-Fuse framework, which extracts features from each frame of the sequence and fuses them to detect the objects in the current frame. However, this inevitably leads to redundant computation since adjacent frames are highly correlated. In this paper, we propose an efficient Motion-guided Sequential Fusion (MSF) method, which exploits the continuity of object motion to mine useful sequential contexts for object detection in the current frame. We first generate 3D proposals on the current frame and propagate them to preceding frames based on the estimated velocities. The points-of-interest are then pooled from the sequence and encoded as proposal features. A novel Bidirectional Feature Aggregation (BiFA) module is further proposed to facilitate the interactions of proposal features across frames. Besides, we optimize the point cloud pooling by a voxel-based sampling technique so that millions of points can be processed in several milliseconds. The proposed MSF method achieves not only better efficiency than other multi-frame detectors but also leading accuracy, with 83.12% and 78.30% mAP on the LEVEL1 and LEVEL2 test sets of Waymo Open Dataset, respectively. Codes can be found at \url{https://github.com/skyhehe123/MSF}.
Abstract:The representative instance segmentation methods mostly segment different object instances with a mask of the fixed resolution, e.g., 28*28 grid. However, a low-resolution mask loses rich details, while a high-resolution mask incurs quadratic computation overhead. It is a challenging task to predict the optimal binary mask for each instance. In this paper, we propose to dynamically select suitable masks for different object proposals. First, a dual-level Feature Pyramid Network (FPN) with adaptive feature aggregation is developed to gradually increase the mask grid resolution, ensuring high-quality segmentation of objects. Specifically, an efficient region-level top-down path (r-FPN) is introduced to incorporate complementary contextual and detailed information from different stages of image-level FPN (i-FPN). Then, to alleviate the increase of computation and memory costs caused by using large masks, we develop a Mask Switch Module (MSM) with negligible computational cost to select the most suitable mask resolution for each instance, achieving high efficiency while maintaining high segmentation accuracy. Without bells and whistles, the proposed method, namely DynaMask, brings consistent and noticeable performance improvements over other state-of-the-arts at a moderate computation overhead. The source code: https://github.com/lslrh/DynaMask.