Abstract:Expressing universal semantics common to all languages is helpful in understanding the meanings of complex and culture-specific sentences. The research theme underlying this scenario focuses on learning universal representations across languages with the usage of massive parallel corpora. However, due to the sparsity and scarcity of parallel data, there is still a big challenge in learning authentic ``universals'' for any two languages. In this paper, we propose EMMA-X: an EM-like Multilingual pre-training Algorithm, to learn (X)Cross-lingual universals with the aid of excessive multilingual non-parallel data. EMMA-X unifies the cross-lingual representation learning task and an extra semantic relation prediction task within an EM framework. Both the extra semantic classifier and the cross-lingual sentence encoder approximate the semantic relation of two sentences, and supervise each other until convergence. To evaluate EMMA-X, we conduct experiments on XRETE, a newly introduced benchmark containing 12 widely studied cross-lingual tasks that fully depend on sentence-level representations. Results reveal that EMMA-X achieves state-of-the-art performance. Further geometric analysis of the built representation space with three requirements demonstrates the superiority of EMMA-X over advanced models.
Abstract:Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. Our models, alone with the instruction data and multilingual benchmark, are available at: \url{https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation}.
Abstract:$k$-Nearest neighbor machine translation ($k$NN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains. By using an upstream NMT model to traverse the downstream training corpus, it is equipped with a datastore containing vectorized key-value pairs, which are retrieved during inference to benefit translation. However, there often exists a significant gap between upstream and downstream domains, which hurts the retrieval accuracy and the final translation quality. To deal with this issue, we propose a novel approach to boost the datastore retrieval of $k$NN-MT by reconstructing the original datastore. Concretely, we design a reviser to revise the key representations, making them better fit for the downstream domain. The reviser is trained using the collected semantically-related key-queries pairs, and optimized by two proposed losses: one is the key-queries semantic distance ensuring each revised key representation is semantically related to its corresponding queries, and the other is an L2-norm loss encouraging revised key representations to effectively retain the knowledge learned by the upstream NMT model. Extensive experiments on domain adaptation tasks demonstrate that our method can effectively boost the datastore retrieval and translation quality of $k$NN-MT.\footnote{Our code is available at \url{https://github.com/DeepLearnXMU/RevisedKey-knn-mt}.}
Abstract:Keyphrase prediction aims to generate phrases (keyphrases) that highly summarizes a given document. Recently, researchers have conducted in-depth studies on this task from various perspectives. In this paper, we comprehensively summarize representative studies from the perspectives of dominant models, datasets and evaluation metrics. Our work analyzes up to 167 previous works, achieving greater coverage of this task than previous surveys. Particularly, we focus highly on deep learning-based keyphrase prediction, which attracts increasing attention of this task in recent years. Afterwards, we conduct several groups of experiments to carefully compare representative models. To the best of our knowledge, our work is the first attempt to compare these models using the identical commonly-used datasets and evaluation metric, facilitating in-depth analyses of their disadvantages and advantages. Finally, we discuss the possible research directions of this task in the future.
Abstract:Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of $\varnothing$ token (means "no corresponding keyphrase"). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive $\varnothing$ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the $\varnothing$ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.
Abstract:This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions.Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results. For reproducibility, we release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/sunsql.
Abstract:The principal task in supervised neural machine translation (NMT) is to learn to generate target sentences conditioned on the source inputs from a set of parallel sentence pairs, and thus produce a model capable of generalizing to unseen instances. However, it is commonly observed that the generalization performance of the model is highly influenced by the amount of parallel data used in training. Although data augmentation is widely used to enrich the training data, conventional methods with discrete manipulations fail to generate diverse and faithful training samples. In this paper, we present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT), which augments each training instance with an adjacency semantic region that could cover adequate variants of literal expression under the same meaning. We conduct extensive experiments on both rich-resource and low-resource settings involving various language pairs, including WMT14 English-{German,French}, NIST Chinese-English and multiple low-resource IWSLT translation tasks. The provided empirical evidences show that CsaNMT sets a new level of performance among existing augmentation techniques, improving on the state-of-the-art by a large margin. The core codes are contained in Appendix E.
Abstract:End-to-End intelligent neural dialogue systems suffer from the problems of generating inconsistent and repetitive responses. Existing dialogue models pay attention to unilaterally incorporating personal knowledge into the dialog while ignoring the fact that incorporating the personality-related conversation information into personal knowledge taken as the bilateral information flow boosts the quality of the subsequent conversation. Besides, it is indispensable to control personal knowledge utilization over the conversation level. In this paper, we propose a conversation-adaption multi-view persona aware response generation model that aims at enhancing conversation consistency and alleviating the repetition from two folds. First, we consider conversation consistency from multiple views. From the view of the persona profile, we design a novel interaction module that not only iteratively incorporates personalized knowledge into each turn conversation but also captures the personality-related information from conversation to enhance personalized knowledge semantic representation. From the view of speaking style, we introduce the speaking style vector and feed it into the decoder to keep the speaking style consistency. To avoid conversation repetition, we devise a coverage mechanism to keep track of the activation of personal knowledge utilization. Experiments on both automatic and human evaluation verify the superiority of our model over previous models.
Abstract:We propose a novel Bi-directional Cognitive Knowledge Framework (BCKF) for reading comprehension from the perspective of complementary learning systems theory. It aims to simulate two ways of thinking in the brain to answer questions, including reverse thinking and inertial thinking. To validate the effectiveness of our framework, we design a corresponding Bi-directional Cognitive Thinking Network (BCTN) to encode the passage and generate a question (answer) given an answer (question) and decouple the bi-directional knowledge. The model has the ability to reverse reasoning questions which can assist inertial thinking to generate more accurate answers. Competitive improvement is observed in DuReader dataset, confirming our hypothesis that bi-directional knowledge helps the QA task. The novel framework shows an interesting perspective on machine reading comprehension and cognitive science.
Abstract:As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.