Abstract:In response to the challenges posed by the extensive parameter updates required for full fine-tuning of large-scale pre-trained models, parameter-efficient fine-tuning (PEFT) methods, exemplified by Low-Rank Adaptation (LoRA), have emerged. LoRA simplifies the fine-tuning process but may still struggle with a certain level of redundancy in low-rank matrices and limited effectiveness from merely increasing their rank. To address these issues, a natural idea is to enhance the independence and diversity of the learning process for the low-rank matrices. Therefore, we propose Masked LoRA Experts (MLAE), an innovative approach that applies the concept of masking to PEFT. Our method incorporates a cellular decomposition strategy that transforms a low-rank matrix into independent rank-1 submatrices, or ``experts'', thus enhancing independence. Additionally, we introduce a binary mask matrix that selectively activates these experts during training to promote more diverse and anisotropic learning, based on expert-level dropout strategies. Our investigations reveal that this selective activation not only enhances performance but also fosters a more diverse acquisition of knowledge with a marked decrease in parameter similarity among MLAE, significantly boosting the quality of the model while barely increasing the parameter count. Remarkably, MLAE achieves new SOTA performance with an average accuracy score of 78.8% on the VTAB-1k benchmark and 90.9% on the FGVC benchmark, demonstrating superior performance. Our code is available at https://github.com/jie040109/MLAE.
Abstract:Text-to-image generation models have seen considerable advancement, catering to the increasing interest in personalized image creation. Current customization techniques often necessitate users to provide multiple images (typically 3-5) for each customized object, along with the classification of these objects and descriptive textual prompts for scenes. This paper questions whether the process can be made more user-friendly and the customization more intricate. We propose a method where users need only provide images along with text for each customization topic, and necessitates only a single image per visual concept. We introduce the concept of a ``multi-modal prompt'', a novel integration of text and images tailored to each customization concept, which simplifies user interaction and facilitates precise customization of both objects and scenes. Our proposed paradigm for customized text-to-image generation surpasses existing finetune-based methods in user-friendliness and the ability to customize complex objects with user-friendly inputs. Our code is available at $\href{https://github.com/zhongzero/Multi-Modal-Prompt}{https://github.com/zhongzero/Multi-Modal-Prompt}$.
Abstract:Dataset distillation, a pragmatic approach in machine learning, aims to create a smaller synthetic dataset from a larger existing dataset. However, existing distillation methods primarily adopt a model-based paradigm, where the synthetic dataset inherits model-specific biases, limiting its generalizability to alternative models. In response to this constraint, we propose a novel methodology termed "model pool". This approach involves selecting models from a diverse model pool based on a specific probability distribution during the data distillation process. Additionally, we integrate our model pool with the established knowledge distillation approach and apply knowledge distillation to the test process of the distilled dataset. Our experimental results validate the effectiveness of the model pool approach across a range of existing models while testing, demonstrating superior performance compared to existing methodologies.
Abstract:Medical imaging systems that are designed for producing diagnostically informative images should be objectively assessed via task-based measures of image quality (IQ). Ideally, computation of task-based measures of IQ needs to account for all sources of randomness in the measurement data, including the variability in the ensemble of objects to be imaged. To address this need, stochastic object models (SOMs) that can generate an ensemble of synthesized objects or phantoms can be employed. Various mathematical SOMs or phantoms were developed that can interpretably synthesize objects, such as lumpy object models and parameterized torso phantoms. However, such SOMs that are purely mathematically defined may not be able to comprehensively capture realistic object variations. To establish realistic SOMs, it is desirable to use experimental data. An augmented generative adversarial network (GAN), AmbientGAN, was recently proposed for establishing SOMs from medical imaging measurements. However, it remains unclear to which extent the AmbientGAN-produced objects can be interpretably controlled. This work introduces a novel approach called AmbientCycleGAN that translates mathematical SOMs to realistic SOMs by use of noisy measurement data. Numerical studies that consider clustered lumpy background (CLB) models and real mammograms are conducted. It is demonstrated that our proposed method can stably establish SOMs based on mathematical models and noisy measurement data. Moreover, the ability of the proposed AmbientCycleGAN to interpretably control image features in the synthesized objects is investigated.
Abstract:Image-to-image translation is a common task in computer vision and has been rapidly increasing the impact on the field of medical imaging. Deep learning-based methods that employ conditional generative adversarial networks (cGANs), such as Pix2PixGAN, have been extensively explored to perform image-to-image translation tasks. However, when noisy medical image data are considered, such methods cannot be directly applied to produce clean images. Recently, an augmented GAN architecture named AmbientGAN has been proposed that can be trained on noisy measurement data to synthesize high-quality clean medical images. Inspired by AmbientGAN, in this work, we propose a new cGAN architecture, Ambient-Pix2PixGAN, for performing medical image-to-image translation tasks by use of noisy measurement data. Numerical studies that consider MRI-to-PET translation are conducted. Both traditional image quality metrics and task-based image quality metrics are employed to assess the proposed Ambient-Pix2PixGAN. It is demonstrated that our proposed Ambient-Pix2PixGAN can be successfully trained on noisy measurement data to produce high-quality translated images in target imaging modality.
Abstract:[$^{18}$F]fluorodeoxyglucose (FDG) positron emission tomography (PET) has emerged as a crucial tool in identifying the epileptic focus, especially in cases where magnetic resonance imaging (MRI) diagnosis yields indeterminate results. FDG PET can provide the metabolic information of glucose and help identify abnormal areas that are not easily found through MRI. However, the effectiveness of FDG PET-based assessment and diagnosis depends on the selection of a healthy control group. The healthy control group typically consists of healthy individuals similar to epilepsy patients in terms of age, gender, and other aspects for providing normal FDG PET data, which will be used as a reference for enhancing the accuracy and reliability of the epilepsy diagnosis. However, significant challenges arise when a healthy PET control group is unattainable. Yaakub \emph{et al.} have previously introduced a Pix2PixGAN-based method for MRI to PET translation. This method used paired MRI and FDG PET scans from healthy individuals for training, and produced pseudo normal FDG PET images from patient MRIs that are subsequently used for lesion detection. However, this approach requires a large amount of high-quality, paired MRI and PET images from healthy control subjects, which may not always be available. In this study, we investigated unsupervised learning methods for unpaired MRI to PET translation for generating pseudo normal FDG PET for epileptic focus localization. Two deep learning methods, CycleGAN and SynDiff, were employed, and we found that diffusion-based method achieved improved performance in accurately localizing the epileptic focus.
Abstract:Strong Artificial Intelligence (Strong AI) or Artificial General Intelligence (AGI) with abstract reasoning ability is the goal of next-generation AI. Recent advancements in Large Language Models (LLMs), along with the emerging field of Multimodal Large Language Models (MLLMs), have demonstrated impressive capabilities across a wide range of multimodal tasks and applications. Particularly, various MLLMs, each with distinct model architectures, training data, and training stages, have been evaluated across a broad range of MLLM benchmarks. These studies have, to varying degrees, revealed different aspects of the current capabilities of MLLMs. However, the reasoning abilities of MLLMs have not been systematically investigated. In this survey, we comprehensively review the existing evaluation protocols of multimodal reasoning, categorize and illustrate the frontiers of MLLMs, introduce recent trends in applications of MLLMs on reasoning-intensive tasks, and finally discuss current practices and future directions. We believe our survey establishes a solid base and sheds light on this important topic, multimodal reasoning.
Abstract:While modern biotechnologies allow synthesizing new proteins and function measurements at scale, efficiently exploring a protein sequence space and engineering it remains a daunting task due to the vast sequence space of any given protein. Protein engineering is typically conducted through an iterative process of adding mutations to the wild-type or lead sequences, recombination of mutations, and running new rounds of screening. To enhance the efficiency of such a process, we propose a tree search-based bandit learning method, which expands a tree starting from the initial sequence with the guidance of a bandit machine learning model. Under simplified assumptions and a Gaussian Process prior, we provide theoretical analysis and a Bayesian regret bound, demonstrating that the combination of local search and bandit learning method can efficiently discover a near-optimal design. The full algorithm is compatible with a suite of randomized tree search heuristics, machine learning models, pre-trained embeddings, and bandit techniques. We test various instances of the algorithm across benchmark protein datasets using simulated screens. Experiment results demonstrate that the algorithm is both sample-efficient and able to find top designs using reasonably small mutation counts.
Abstract:Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. These models not only excel in traditional vision-language tasks but also demonstrate impressive performance in contemporary multi-modal benchmarks. Although many of these benchmarks attempt to holistically evaluate MLLMs, they typically concentrate on basic reasoning tasks, often yielding only simple yes/no or multi-choice responses. These methods naturally lead to confusion and difficulties in conclusively determining the reasoning capabilities of MLLMs. To mitigate this issue, we manually curate a benchmark dataset specifically designed for MLLMs, with a focus on complex reasoning tasks. Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning. The queries in our dataset are intentionally constructed to engage the reasoning capabilities of MLLMs in the process of generating answers. For a fair comparison across various MLLMs, we incorporate intermediate reasoning steps into our evaluation criteria. In instances where an MLLM is unable to produce a definitive answer, its reasoning ability is evaluated by requesting intermediate reasoning steps. If these steps align with our manual annotations, appropriate scores are assigned. This evaluation scheme resembles methods commonly used in human assessments, such as exams or assignments, and represents what we consider a more effective assessment technique compared with existing benchmarks. We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark, designed to challenge and accurately measure their reasoning capabilities. The code and data will be released at https://infimm.github.io/InfiMM-Eval/
Abstract:Few-shot learning is a challenging problem since only a few examples are provided to recognize a new class. Several recent studies exploit additional semantic information, e.g. text embeddings of class names, to address the issue of rare samples through combining semantic prototypes with visual prototypes. However, these methods still suffer from the spurious visual features learned from the rare support samples, resulting in limited benefits. In this paper, we propose a novel Semantic Prompt (SP) approach for few-shot learning. Instead of the naive exploitation of semantic information for remedying classifiers, we explore leveraging semantic information as prompts to tune the visual feature extraction network adaptively. Specifically, we design two complementary mechanisms to insert semantic prompts into the feature extractor: one is to enable the interaction between semantic prompts and patch embeddings along the spatial dimension via self-attention, another is to supplement visual features with the transformed semantic prompts along the channel dimension. By combining these two mechanisms, the feature extractor presents a better ability to attend to the class-specific features and obtains more generalized image representations with merely a few support samples. Through extensive experiments on four datasets, the proposed approach achieves promising results, improving the 1-shot learning accuracy by 3.67% on average.