Abstract:Text-to-image generation models have seen considerable advancement, catering to the increasing interest in personalized image creation. Current customization techniques often necessitate users to provide multiple images (typically 3-5) for each customized object, along with the classification of these objects and descriptive textual prompts for scenes. This paper questions whether the process can be made more user-friendly and the customization more intricate. We propose a method where users need only provide images along with text for each customization topic, and necessitates only a single image per visual concept. We introduce the concept of a ``multi-modal prompt'', a novel integration of text and images tailored to each customization concept, which simplifies user interaction and facilitates precise customization of both objects and scenes. Our proposed paradigm for customized text-to-image generation surpasses existing finetune-based methods in user-friendliness and the ability to customize complex objects with user-friendly inputs. Our code is available at $\href{https://github.com/zhongzero/Multi-Modal-Prompt}{https://github.com/zhongzero/Multi-Modal-Prompt}$.
Abstract:Dataset distillation, a pragmatic approach in machine learning, aims to create a smaller synthetic dataset from a larger existing dataset. However, existing distillation methods primarily adopt a model-based paradigm, where the synthetic dataset inherits model-specific biases, limiting its generalizability to alternative models. In response to this constraint, we propose a novel methodology termed "model pool". This approach involves selecting models from a diverse model pool based on a specific probability distribution during the data distillation process. Additionally, we integrate our model pool with the established knowledge distillation approach and apply knowledge distillation to the test process of the distilled dataset. Our experimental results validate the effectiveness of the model pool approach across a range of existing models while testing, demonstrating superior performance compared to existing methodologies.