Abstract:Image denoising algorithms have been extensively investigated for medical imaging. To perform image denoising, penalized least-squares (PLS) problems can be designed and solved, in which the penalty term encodes prior knowledge of the object being imaged. Sparsity-promoting penalties, such as total variation (TV), have been a popular choice for regularizing image denoising problems. However, such hand-crafted penalties may not be able to preserve task-relevant information in measured image data and can lead to oversmoothed image appearances and patchy artifacts that degrade signal detectability. Supervised learning methods that employ convolutional neural networks (CNNs) have emerged as a popular approach to denoising medical images. However, studies have shown that CNNs trained with loss functions based on traditional image quality measures can lead to a loss of task-relevant information in images. Some previous works have investigated task-based loss functions that employ model observers for training the CNN denoising models. However, such training processes typically require a large number of noisy and ground-truth (noise-free or low-noise) image data pairs. In this work, we propose a task-based regularization strategy for use with PLS in medical image denoising. The proposed task-based regularization is associated with the likelihood of linear test statistics of noisy images for Gaussian noise models. The proposed method does not require ground-truth image data and solves an individual optimization problem for denoising each image. Computer-simulation studies are conducted that consider a multivariate-normally distributed (MVN) lumpy background and a binary texture background. It is demonstrated that the proposed regularization strategy can effectively improve signal detectability in denoised images.
Abstract:The escalating global cancer burden underscores the critical need for precise diagnostic tools in oncology. This research employs deep learning to enhance lesion segmentation in PET/CT imaging, utilizing a dataset of 900 whole-body FDG-PET/CT and 600 PSMA-PET/CT studies from the AutoPET challenge III. Our methodical approach includes robust preprocessing and data augmentation techniques to ensure model robustness and generalizability. We investigate the influence of non-zero normalization and modifications to the data augmentation pipeline, such as the introduction of RandGaussianSharpen and adjustments to the Gamma transform parameter. This study aims to contribute to the standardization of preprocessing and augmentation strategies in PET/CT imaging, potentially improving the diagnostic accuracy and the personalized management of cancer patients. Our code will be open-sourced and available at https://github.com/jiayiliu-pku/DC2024.
Abstract:[$^{18}$F]fluorodeoxyglucose (FDG) positron emission tomography (PET) has emerged as a crucial tool in identifying the epileptic focus, especially in cases where magnetic resonance imaging (MRI) diagnosis yields indeterminate results. FDG PET can provide the metabolic information of glucose and help identify abnormal areas that are not easily found through MRI. However, the effectiveness of FDG PET-based assessment and diagnosis depends on the selection of a healthy control group. The healthy control group typically consists of healthy individuals similar to epilepsy patients in terms of age, gender, and other aspects for providing normal FDG PET data, which will be used as a reference for enhancing the accuracy and reliability of the epilepsy diagnosis. However, significant challenges arise when a healthy PET control group is unattainable. Yaakub \emph{et al.} have previously introduced a Pix2PixGAN-based method for MRI to PET translation. This method used paired MRI and FDG PET scans from healthy individuals for training, and produced pseudo normal FDG PET images from patient MRIs that are subsequently used for lesion detection. However, this approach requires a large amount of high-quality, paired MRI and PET images from healthy control subjects, which may not always be available. In this study, we investigated unsupervised learning methods for unpaired MRI to PET translation for generating pseudo normal FDG PET for epileptic focus localization. Two deep learning methods, CycleGAN and SynDiff, were employed, and we found that diffusion-based method achieved improved performance in accurately localizing the epileptic focus.