Abstract:As LLMs continue to become more powerful and versatile, human evaluation has quickly become intractable at scale and reliance on automatic metrics has become the norm. Recently, it has been shown that LLMs are themselves state-of-the-art evaluators for many tasks. These Autoraters are typically designed so that they generalize to new systems and test sets. In practice, however, evaluation is performed on a small set of fixed, canonical test sets, which are carefully curated to measure certain capabilities of interest and are not changed frequently. In this work, we design a method which specializes a prompted Autorater to a given test set, by leveraging historical ratings on the test set to construct in-context learning (ICL) examples. We evaluate our Specialist method on the task of fine-grained machine translation evaluation, and show that it dramatically outperforms the state-of-the-art XCOMET metric by 54% and 119% on the WMT'23 and WMT'24 test sets, respectively. We perform extensive analyses to understand the representations learned by our Specialist metrics, and how variability in rater behavior affects their performance. We also verify the generalizability and robustness of our Specialist method for designing automatic metrics across different numbers of ICL examples, LLM backbones, systems to evaluate, and evaluation tasks.
Abstract:Collecting high-quality translations is crucial for the development and evaluation of machine translation systems. However, traditional human-only approaches are costly and slow. This study presents a comprehensive investigation of 11 approaches for acquiring translation data, including human-only, machineonly, and hybrid approaches. Our findings demonstrate that human-machine collaboration can match or even exceed the quality of human-only translations, while being more cost-efficient. Error analysis reveals the complementary strengths between human and machine contributions, highlighting the effectiveness of collaborative methods. Cost analysis further demonstrates the economic benefits of human-machine collaboration methods, with some approaches achieving top-tier quality at around 60% of the cost of traditional methods. We release a publicly available dataset containing nearly 18,000 segments of varying translation quality with corresponding human ratings to facilitate future research.
Abstract:Reliable human evaluation is critical to the development of successful natural language generation models, but achieving it is notoriously difficult. Stability is a crucial requirement when ranking systems by quality: consistent ranking of systems across repeated evaluations is not just desirable, but essential. Without it, there is no reliable foundation for hill-climbing or product launch decisions. In this paper, we use machine translation and its state-of-the-art human evaluation framework, MQM, as a case study to understand how to set up reliable human evaluations that yield stable conclusions. We investigate the optimal configurations for item allocation to raters, number of ratings per item, and score normalization. Our study on two language pairs provides concrete recommendations for designing replicable human evaluation studies. We also collect and release the largest publicly available dataset of multi-segment translations rated by multiple professional translators, consisting of nearly 140,000 segment annotations across two language pairs.
Abstract:Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on estimating a single scalar quality score, current metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we help fill this gap by proposing AutoMQM, a prompting technique which leverages the reasoning and in-context learning capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple score prediction prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations.
Abstract:Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) -- languages for which NLP re-search is particularly far behind in meeting user needs -- it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks -- tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text-only, multi-modal (vision, audio, and text),supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models
Abstract:We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report.
Abstract:We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task
Abstract:We present a novel approach to the problem of text style transfer. Unlike previous approaches that use parallel or non-parallel labeled data, our technique removes the need for labels entirely, relying instead on the implicit connection in style between adjacent sentences in unlabeled text. We show that T5 (Raffel et al., 2019), a strong pretrained text-to-text model, can be adapted to extract a style vector from arbitrary text and use this vector to condition the decoder to perform style transfer. As the resulting learned style vector space encodes many facets of textual style, we recast transfers as "targeted restyling" vector operations that adjust specific attributes of the input text while preserving others. When trained over unlabeled Amazon reviews data, our resulting TextSETTR model is competitive on sentiment transfer, even when given only four exemplars of each class. Furthermore, we demonstrate that a single model trained on unlabeled Common Crawl data is capable of transferring along multiple dimensions including dialect, emotiveness, formality, politeness, and sentiment.
Abstract:Recent embedding-based methods in unsupervised bilingual lexicon induction have shown good results, but generally have not leveraged orthographic (spelling) information, which can be helpful for pairs of related languages. This work augments a state-of-the-art method with orthographic features, and extends prior work in this space by proposing methods that can learn and utilize orthographic correspondences even between languages with different scripts. We demonstrate this by experimenting on three language pairs with different scripts and varying degrees of lexical similarity.
Abstract:Machine translation has an undesirable propensity to produce "translationese" artifacts, which can lead to higher BLEU scores while being liked less by human raters. Motivated by this, we model translationese and original (i.e. natural) text as separate languages in a multilingual model, and pose the question: can we perform zero-shot translation between original source text and original target text? There is no data with original source and original target, so we train sentence-level classifiers to distinguish translationese from original target text, and use this classifier to tag the training data for an NMT model. Using this technique we bias the model to produce more natural outputs at test time, yielding gains in human evaluation scores on both accuracy and fluency. Additionally, we demonstrate that it is possible to bias the model to produce translationese and game the BLEU score, increasing it while decreasing human-rated quality. We analyze these models using metrics to measure the degree of translationese in the output, and present an analysis of the capriciousness of heuristically-based train-data tagging.