Abstract:Despite growing interest in incorporating feedback to improve language models, most efforts focus only on sequence-level annotations. In this work, we explore the potential of utilizing fine-grained span-level annotations from offline datasets to improve model quality. We develop a simple finetuning algorithm, called Training with Annotations (TWA), to directly train machine translation models on such annotated data. TWA utilizes targeted span-level error information while also flexibly learning what to penalize within a span. Moreover, TWA considers the overall trajectory of a sequence when deciding which non-error spans to utilize as positive signals. Experiments on English-German and Chinese-English machine translation show that TWA outperforms baselines such as Supervised FineTuning on sequences filtered for quality and Direct Preference Optimization on pairs constructed from the same data.
Abstract:In this paper, we present the MetricX-24 submissions to the WMT24 Metrics Shared Task and provide details on the improvements we made over the previous version of MetricX. Our primary submission is a hybrid reference-based/-free metric, which can score a translation irrespective of whether it is given the source segment, the reference, or both. The metric is trained on previous WMT data in a two-stage fashion, first on the DA ratings only, then on a mixture of MQM and DA ratings. The training set in both stages is augmented with synthetic examples that we created to make the metric more robust to several common failure modes, such as fluent but unrelated translation, or undertranslation. We demonstrate the benefits of the individual modifications via an ablation study, and show a significant performance increase over MetricX-23 on the WMT23 MQM ratings, as well as our new synthetic challenge set.
Abstract:Recent research in neural machine translation (NMT) has shown that training on high-quality machine-generated data can outperform training on human-generated data. This work accompanies the first-ever release of a LLM-generated, MBR-decoded and QE-reranked dataset with both sentence-level and multi-sentence examples. We perform extensive experiments to demonstrate the quality of our dataset in terms of its downstream impact on NMT model performance. We find that training from scratch on our (machine-generated) dataset outperforms training on the (web-crawled) WMT'23 training dataset (which is 300 times larger), and also outperforms training on the top-quality subset of the WMT'23 training dataset. We also find that performing self-distillation by finetuning the LLM which generated this dataset outperforms the LLM's strong few-shot baseline. These findings corroborate the quality of our dataset, and demonstrate the value of high-quality machine-generated data in improving performance of NMT models.
Abstract:Minimum Bayes Risk (MBR) decoding is a powerful decoding strategy widely used for text generation tasks, but its quadratic computational complexity limits its practical application. This paper presents a novel approach for approximating MBR decoding using matrix completion techniques, focusing on the task of machine translation. We formulate MBR decoding as a matrix completion problem, where the utility metric scores between candidate hypotheses and pseudo-reference translations form a low-rank matrix. First, we empirically show that the scores matrices indeed have a low-rank structure. Then, we exploit this by only computing a random subset of the scores and efficiently recover the missing entries in the matrix by applying the Alternating Least Squares (ALS) algorithm, thereby enabling a fast approximation of the MBR decoding process. Our experimental results on machine translation tasks demonstrate that the proposed method requires 1/16 utility metric computations compared to vanilla MBR decoding while achieving equal translation quality measured by COMET22 on the WMT22 dataset (en<>de and en<>ru). We also benchmark our method against other approximation methods and we show gains in quality when comparing to them.
Abstract:Recent improvements in text generation have leveraged human feedback to improve the quality of the generated output. However, human feedback is not always available, especially during inference. In this work, we propose an inference time optimization method FITO to use fine-grained actionable feedback in the form of error type, error location and severity level that are predicted by a learned error pinpoint model for iterative refinement. FITO starts with an initial output, then iteratively incorporates the feedback via a refinement model that generates an improved output conditioned on the feedback. Given the uncertainty of consistent refined samples at iterative steps, we formulate iterative refinement into a local search problem and develop a simulated annealing based algorithm that balances exploration of the search space and optimization for output quality. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA) and topical summarization. We observe 0.8 and 0.7 MetricX gain on Chinese-English and English-German translation, 4.5 and 1.8 ROUGE-L gain at long form QA and topic summarization respectively, with a single iteration of refinement. With our simulated annealing algorithm, we see further quality improvements, including up to 1.7 MetricX improvements over the baseline approach.
Abstract:Quality Estimation (QE), the evaluation of machine translation output without the need of explicit references, has seen big improvements in the last years with the use of neural metrics. In this paper we analyze the viability of using QE metrics for filtering out bad quality sentence pairs in the training data of neural machine translation systems~(NMT). While most corpus filtering methods are focused on detecting noisy examples in collections of texts, usually huge amounts of web crawled data, QE models are trained to discriminate more fine-grained quality differences. We show that by selecting the highest quality sentence pairs in the training data, we can improve translation quality while reducing the training size by half. We also provide a detailed analysis of the filtering results, which highlights the differences between both approaches.
Abstract:Maximum-a-posteriori (MAP) decoding is the most widely used decoding strategy for neural machine translation (NMT) models. The underlying assumption is that model probability correlates well with human judgment, with better translations being more likely. However, research has shown that this assumption does not always hold, and decoding strategies which directly optimize a utility function, like Minimum Bayes Risk (MBR) or Quality-Aware decoding can significantly improve translation quality over standard MAP decoding. The main disadvantage of these methods is that they require an additional model to predict the utility, and additional steps during decoding, which makes the entire process computationally demanding. In this paper, we propose to make the NMT models themselves quality-aware by training them to estimate the quality of their own output. During decoding, we can use the model's own quality estimates to guide the generation process and produce the highest-quality translations possible. We demonstrate that the model can self-evaluate its own output during translation, eliminating the need for a separate quality estimation model. Moreover, we show that using this quality signal as a prompt during MAP decoding can significantly improve translation quality. When using the internal quality estimate to prune the hypothesis space during MBR decoding, we can not only further improve translation quality, but also reduce inference speed by two orders of magnitude.
Abstract:Recent research in decoding methods for Natural Language Generation (NLG) tasks has shown that MAP decoding is not optimal, because model probabilities do not always align with human preferences. Stronger decoding methods, including Quality Estimation (QE) reranking and Minimum Bayes' Risk (MBR) decoding, have since been proposed to mitigate the model-perplexity-vs-quality mismatch. While these decoding methods achieve state-of-the-art performance, they are prohibitively expensive to compute. In this work, we propose MBR finetuning and QE finetuning which distill the quality gains from these decoding methods at training time, while using an efficient decoding algorithm at inference time. Using the canonical NLG task of Neural Machine Translation (NMT), we show that even with self-training, these finetuning methods significantly outperform the base model. Moreover, when using an external LLM as a teacher model, these finetuning methods outperform finetuning on human-generated references. These findings suggest new ways to leverage monolingual data to achieve improvements in model quality that are on par with, or even exceed, improvements from human-curated data, while maintaining maximum efficiency during decoding.
Abstract:As research on machine translation moves to translating text beyond the sentence level, it remains unclear how effective automatic evaluation metrics are at scoring longer translations. In this work, we first propose a method for creating paragraph-level data for training and meta-evaluating metrics from existing sentence-level data. Then, we use these new datasets to benchmark existing sentence-level metrics as well as train learned metrics at the paragraph level. Interestingly, our experimental results demonstrate that using sentence-level metrics to score entire paragraphs is equally as effective as using a metric designed to work at the paragraph level. We speculate this result can be attributed to properties of the task of reference-based evaluation as well as limitations of our datasets with respect to capturing all types of phenomena that occur in paragraph-level translations.
Abstract:Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on estimating a single scalar quality score, current metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we help fill this gap by proposing AutoMQM, a prompting technique which leverages the reasoning and in-context learning capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple score prediction prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations.