Abstract:Quality Estimation (QE), the evaluation of machine translation output without the need of explicit references, has seen big improvements in the last years with the use of neural metrics. In this paper we analyze the viability of using QE metrics for filtering out bad quality sentence pairs in the training data of neural machine translation systems~(NMT). While most corpus filtering methods are focused on detecting noisy examples in collections of texts, usually huge amounts of web crawled data, QE models are trained to discriminate more fine-grained quality differences. We show that by selecting the highest quality sentence pairs in the training data, we can improve translation quality while reducing the training size by half. We also provide a detailed analysis of the filtering results, which highlights the differences between both approaches.
Abstract:In this paper, we propose an effective way for biasing the attention mechanism of a sequence-to-sequence neural machine translation (NMT) model towards the well-studied statistical word alignment models. We show that our novel guided alignment training approach improves translation quality on real-life e-commerce texts consisting of product titles and descriptions, overcoming the problems posed by many unknown words and a large type/token ratio. We also show that meta-data associated with input texts such as topic or category information can significantly improve translation quality when used as an additional signal to the decoder part of the network. With both novel features, the BLEU score of the NMT system on a product title set improves from 18.6 to 21.3%. Even larger MT quality gains are obtained through domain adaptation of a general domain NMT system to e-commerce data. The developed NMT system also performs well on the IWSLT speech translation task, where an ensemble of four variant systems outperforms the phrase-based baseline by 2.1% BLEU absolute.