Abstract:Large Language Models (LLMs) trained on large volumes of data excel at various natural language tasks, but they cannot handle tasks requiring knowledge that has not been trained on previously. One solution is to use a retriever that fetches relevant information to expand LLM's knowledge scope. However, existing textual-oriented retrieval-based LLMs are not ideal on structured table data due to diversified data modalities and large table sizes. In this work, we propose OpenTab, an open-domain table reasoning framework powered by LLMs. Overall, OpenTab leverages table retriever to fetch relevant tables and then generates SQL programs to parse the retrieved tables efficiently. Utilizing the intermediate data derived from the SQL executions, it conducts grounded inference to produce accurate response. Extensive experimental evaluation shows that OpenTab significantly outperforms baselines in both open- and closed-domain settings, achieving up to 21.5% higher accuracy. We further run ablation studies to validate the efficacy of our proposed designs of the system.
Abstract:As LLMs become commonplace, machine-generated text has the potential to flood the internet with spam, social media bots, and valueless content. Watermarking is a simple and effective strategy for mitigating such harms by enabling the detection and documentation of LLM-generated text. Yet a crucial question remains: How reliable is watermarking in realistic settings in the wild? There, watermarked text may be modified to suit a user's needs, or entirely rewritten to avoid detection. We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document. We find that watermarks remain detectable even after human and machine paraphrasing. While these attacks dilute the strength of the watermark, paraphrases are statistically likely to leak n-grams or even longer fragments of the original text, resulting in high-confidence detections when enough tokens are observed. For example, after strong human paraphrasing the watermark is detectable after observing 800 tokens on average, when setting a 1e-5 false positive rate. We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document, and we compare the robustness of watermarking to other kinds of detectors.
Abstract:Most state-of-the-art Graph Neural Networks (GNNs) can be defined as a form of graph convolution which can be realized by message passing between direct neighbors or beyond. To scale such GNNs to large graphs, various neighbor-, layer-, or subgraph-sampling techniques are proposed to alleviate the "neighbor explosion" problem by considering only a small subset of messages passed to the nodes in a mini-batch. However, sampling-based methods are difficult to apply to GNNs that utilize many-hops-away or global context each layer, show unstable performance for different tasks and datasets, and do not speed up model inference. We propose a principled and fundamentally different approach, VQ-GNN, a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance. In contrast to sampling-based techniques, our approach can effectively preserve all the messages passed to a mini-batch of nodes by learning and updating a small number of quantized reference vectors of global node representations, using VQ within each GNN layer. Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix. We show that such a compact low-rank version of the gigantic convolution matrix is sufficient both theoretically and experimentally. In company with VQ, we design a novel approximated message passing algorithm and a nontrivial back-propagation rule for our framework. Experiments on various types of GNN backbones demonstrate the scalability and competitive performance of our framework on large-graph node classification and link prediction benchmarks.
Abstract:Randomized smoothing (RS) is an effective and scalable technique for constructing neural network classifiers that are certifiably robust to adversarial perturbations. Most RS works focus on training a good base model that boosts the certified robustness of the smoothed model. However, existing RS techniques treat every data point the same, i.e., the variance of the Gaussian noise used to form the smoothed model is preset and universal for all training and test data. This preset and universal Gaussian noise variance is suboptimal since different data points have different margins and the local properties of the base model vary across the input examples. In this paper, we examine the impact of customized handling of examples and propose Instance-wise Randomized Smoothing (Insta-RS) -- a multiple-start search algorithm that assigns customized Gaussian variances to test examples. We also design Insta-RS Train -- a novel two-stage training algorithm that adaptively adjusts and customizes the noise level of each training example for training a base model that boosts the certified robustness of the instance-wise Gaussian smoothed model. Through extensive experiments on CIFAR-10 and ImageNet, we show that our method significantly enhances the average certified radius (ACR) as well as the clean data accuracy compared to existing state-of-the-art provably robust classifiers.
Abstract:Changes in neural architectures have fostered significant breakthroughs in language modeling and computer vision. Unfortunately, novel architectures often require re-thinking the choice of hyperparameters (e.g., learning rate, warmup schedule, and momentum coefficients) to maintain stability of the optimizer. This optimizer instability is often the result of poor parameter initialization, and can be avoided by architecture-specific initialization schemes. In this paper, we present GradInit, an automated and architecture agnostic method for initializing neural networks. GradInit is based on a simple heuristic; the variance of each network layer is adjusted so that a single step of SGD or Adam results in the smallest possible loss value. This adjustment is done by introducing a scalar multiplier variable in front of each parameter block, and then optimizing these variables using a simple numerical scheme. GradInit accelerates the convergence and test performance of many convolutional architectures, both with or without skip connections, and even without normalization layers. It also enables training the original Post-LN Transformer for machine translation without learning rate warmup under a wide range of learning rates and momentum coefficients. Code is available at https://github.com/zhuchen03/gradinit.
Abstract:Semi-supervised variational autoencoders (VAEs) have obtained strong results, but have also encountered the challenge that good ELBO values do not always imply accurate inference results. In this paper, we investigate and propose two causes of this problem: (1) The ELBO objective cannot utilize the label information directly. (2) A bottleneck value exists and continuing to optimize ELBO after this value will not improve inference accuracy. On the basis of the experiment results, we propose SHOT-VAE to address these problems without introducing additional prior knowledge. The SHOT-VAE offers two contributions: (1) A new ELBO approximation named smooth-ELBO that integrates the label predictive loss into ELBO. (2) An approximation based on optimal interpolation that breaks the ELBO value bottleneck by reducing the margin between ELBO and the data likelihood. The SHOT-VAE achieves good performance with a 25.30% error rate on CIFAR-100 with 10k labels and reduces the error rate to 6.11% on CIFAR-10 with 4k labels.
Abstract:Data augmentation helps neural networks generalize better, but it remains an open question how to effectively augment graph data to enhance the performance of GNNs (Graph Neural Networks). While most existing graph regularizers focus on augmenting graph topological structures by adding/removing edges, we offer a novel direction to augment in the input node feature space for better performance. We propose a simple but effective solution, FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training, and boosts performance at test time. Empirically, FLAG can be easily implemented with a dozen lines of code and is flexible enough to function with any GNN backbone, on a wide variety of large-scale datasets, and in both transductive and inductive settings. Without modifying a model's architecture or training setup, FLAG yields a consistent and salient performance boost across both node and graph classification tasks. Using FLAG, we reach state-of-the-art performance on the large-scale ogbg-molpcba, ogbg-ppa, and ogbg-code datasets.
Abstract:Conventional image classifiers are trained by randomly sampling mini-batches of images. To achieve state-of-the-art performance, sophisticated data augmentation schemes are used to expand the amount of training data available for sampling. In contrast, meta-learning algorithms sample not only images, but classes as well. We investigate how data augmentation can be used not only to expand the number of images available per class, but also to generate entirely new classes. We systematically dissect the meta-learning pipeline and investigate the distinct ways in which data augmentation can be integrated at both the image and class levels. Our proposed meta-specific data augmentation significantly improves the performance of meta-learners on few-shot classification benchmarks.