Abstract:Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases. Leveraging LCLMs' ability to natively ingest and process entire corpora of information offers numerous advantages. It enhances user-friendliness by eliminating the need for specialized knowledge of tools, provides robust end-to-end modeling that minimizes cascading errors in complex pipelines, and allows for the application of sophisticated prompting techniques across the entire system. To assess this paradigm shift, we introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning. Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks. However, LCLMs still face challenges in areas like compositional reasoning that are required in SQL-like tasks. Notably, prompting strategies significantly influence performance, emphasizing the need for continued research as context lengths grow. Overall, LOFT provides a rigorous testing ground for LCLMs, showcasing their potential to supplant existing paradigms and tackle novel tasks as model capabilities scale.
Abstract:Recent work has uncovered promising ways to extract well-calibrated confidence estimates from language models (LMs), where the model's confidence score reflects how likely it is to be correct. However, while LMs may appear well-calibrated over broad distributions, this often hides significant miscalibration within narrower slices (e.g., systemic over-confidence in math can balance out systemic under-confidence in history, yielding perfect calibration in aggregate). To attain well-calibrated confidence estimates for any slice of a distribution, we propose a new framework for few-shot slice-specific recalibration. Specifically, we train a recalibration model that takes in a few unlabeled examples from any given slice and predicts a curve that remaps confidence scores to be more accurate for that slice. Our trained model can recalibrate for arbitrary new slices, without using any labeled data from that slice. This enables us to identify domain-specific confidence thresholds above which the LM's predictions can be trusted, and below which it should abstain. Experiments show that our few-shot recalibrator consistently outperforms existing calibration methods, for instance improving calibration error for PaLM2-Large on MMLU by 16%, as compared to temperature scaling.
Abstract:The remarkable capabilities of large language models have been accompanied by a persistent drawback: the generation of false and unsubstantiated claims commonly known as "hallucinations". To combat this issue, recent research has introduced approaches that involve editing and attributing the outputs of language models, particularly through prompt-based editing. However, the inference cost and speed of using large language models for editing currently bottleneck prompt-based methods. These bottlenecks motivate the training of compact editors, which is challenging due to the scarcity of training data for this purpose. To overcome these challenges, we exploit the power of large language models to introduce corruptions (i.e., noise) into text and subsequently fine-tune compact editors to denoise the corruptions by incorporating relevant evidence. Our methodology is entirely unsupervised and provides us with faux hallucinations for training in any domain. Our Petite Unsupervised Research and Revision model, PURR, not only improves attribution over existing editing methods based on fine-tuning and prompting, but also achieves faster execution times by orders of magnitude.
Abstract:Training data attribution (TDA) methods offer to trace a model's prediction on any given example back to specific influential training examples. Existing approaches do so by assigning a scalar influence score to each training example, under a simplifying assumption that influence is additive. But in reality, we observe that training examples interact in highly non-additive ways due to factors such as inter-example redundancy, training order, and curriculum learning effects. To study such interactions, we propose Simfluence, a new paradigm for TDA where the goal is not to produce a single influence score per example, but instead a training run simulator: the user asks, ``If my model had trained on example $z_1$, then $z_2$, ..., then $z_n$, how would it behave on $z_{test}$?''; the simulator should then output a simulated training run, which is a time series predicting the loss on $z_{test}$ at every step of the simulated run. This enables users to answer counterfactual questions about what their model would have learned under different training curricula, and to directly see where in training that learning would occur. We present a simulator, Simfluence-Linear, that captures non-additive interactions and is often able to predict the spiky trajectory of individual example losses with surprising fidelity. Furthermore, we show that existing TDA methods such as TracIn and influence functions can be viewed as special cases of Simfluence-Linear. This enables us to directly compare methods in terms of their simulation accuracy, subsuming several prior TDA approaches to evaluation. In experiments on large language model (LLM) fine-tuning, we show that our method predicts loss trajectories with much higher accuracy than existing TDA methods (doubling Spearman's correlation and reducing mean-squared error by 75%) across several tasks, models, and training methods.
Abstract:Dynamic evaluation of language models (LMs) adapts model parameters at test time using gradient information from previous tokens and substantially improves LM performance. However, it requires over 3x more compute than standard inference. We present Fast Weight Layers (FWLs), a neural component that provides the benefits of dynamic evaluation much more efficiently by expressing gradient updates as linear attention. A key improvement over dynamic evaluation is that FWLs can also be applied at training time so the model learns to make good use of gradient updates. FWLs can easily be added on top of existing transformer models, require relatively little extra compute or memory to run, and significantly improve language modeling perplexity.
Abstract:Language models (LMs) now excel at many tasks such as few-shot learning, question answering, reasoning, and dialog. However, they sometimes generate unsupported or misleading content. A user cannot easily determine whether their outputs are trustworthy or not, because most LMs do not have any built-in mechanism for attribution to external evidence. To enable attribution while still preserving all the powerful advantages of recent generation models, we propose RARR (Retrofit Attribution using Research and Revision), a system that 1) automatically finds attribution for the output of any text generation model and 2) post-edits the output to fix unsupported content while preserving the original output as much as possible. When applied to the output of several state-of-the-art LMs on a diverse set of generation tasks, we find that RARR significantly improves attribution while otherwise preserving the original input to a much greater degree than previously explored edit models. Furthermore, the implementation of RARR requires only a handful of training examples, a large language model, and standard web search.
Abstract:Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.
Abstract:Many important questions (e.g. "How to eat healthier?") require conversation to establish context and explore in depth. However, conversational question answering (ConvQA) systems have long been stymied by scarce training data that is expensive to collect. To address this problem, we propose a new technique for synthetically generating diverse and high-quality dialog data: dialog inpainting. Our approach takes the text of any document and transforms it into a two-person dialog between the writer and an imagined reader: we treat sentences from the article as utterances spoken by the writer, and then use a dialog inpainter to predict what the imagined reader asked or said in between each of the writer's utterances. By applying this approach to passages from Wikipedia and the web, we produce WikiDialog and WebDialog, two datasets totalling 19 million diverse information-seeking dialogs -- 1,000x larger than the largest existing ConvQA dataset. Furthermore, human raters judge the answer adequacy and conversationality of WikiDialog to be as good or better than existing manually-collected datasets. Using our inpainted data to pre-train ConvQA retrieval systems, we significantly advance state-of-the-art across three benchmarks (QReCC, OR-QuAC, TREC CAsT) yielding up to 40% relative gains on standard evaluation metrics.
Abstract:Neural language models (LMs) have been shown to memorize a great deal of factual knowledge. But when an LM generates an assertion, it is often difficult to determine where it learned this information and whether it is true. In this paper, we introduce a new benchmark for fact tracing: tracing language models' assertions back to the training examples that provided evidence for those predictions. Prior work has suggested that dataset-level influence methods might offer an effective framework for tracing predictions back to training data. However, such methods have not been evaluated for fact tracing, and researchers primarily have studied them through qualitative analysis or as a data cleaning technique for classification/regression tasks. We present the first experiments that evaluate influence methods for fact tracing, using well-understood information retrieval (IR) metrics. We compare two popular families of influence methods -- gradient-based and embedding-based -- and show that neither can fact-trace reliably; indeed, both methods fail to outperform an IR baseline (BM25) that does not even access the LM. We explore why this occurs (e.g., gradient saturation) and demonstrate that existing influence methods must be improved significantly before they can reliably attribute factual predictions in LMs.
Abstract:In practical applications of semantic parsing, we often want to rapidly change the behavior of the parser, such as enabling it to handle queries in a new domain, or changing its predictions on certain targeted queries. While we can introduce new training examples exhibiting the target behavior, a mechanism for enacting such behavior changes without expensive model re-training would be preferable. To this end, we propose ControllAble Semantic Parser via Exemplar Retrieval (CASPER). Given an input query, the parser retrieves related exemplars from a retrieval index, augments them to the query, and then applies a generative seq2seq model to produce an output parse. The exemplars act as a control mechanism over the generic generative model: by manipulating the retrieval index or how the augmented query is constructed, we can manipulate the behavior of the parser. On the MTOP dataset, in addition to achieving state-of-the-art on the standard setup, we show that CASPER can parse queries in a new domain, adapt the prediction toward the specified patterns, or adapt to new semantic schemas without having to further re-train the model.