Abstract:Significant advancements in image generation have been made with diffusion models. Nevertheless, when contrasted with previous generative models, diffusion models face substantial computational overhead, leading to failure in real-time generation. Recent approaches have aimed to accelerate diffusion models by reducing the number of sampling steps through improved sampling techniques or step distillation. However, the methods to diminish the computational cost for each timestep remain a relatively unexplored area. Observing the fact that diffusion models exhibit varying input distributions and feature distributions at different timesteps, we introduce one-to-many knowledge distillation (O2MKD), which distills a single teacher diffusion model into multiple student diffusion models, where each student diffusion model is trained to learn the teacher's knowledge for a subset of continuous timesteps. Experiments on CIFAR10, LSUN Church, CelebA-HQ with DDPM and COCO30K with Stable Diffusion show that O2MKD can be applied to previous knowledge distillation and fast sampling methods to achieve significant acceleration. Codes will be released in Github.
Abstract:In this work, we introduce Unique3D, a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images, featuring state-of-the-art generation fidelity and strong generalizability. Previous methods based on Score Distillation Sampling (SDS) can produce diversified 3D results by distilling 3D knowledge from large 2D diffusion models, but they usually suffer from long per-case optimization time with inconsistent issues. Recent works address the problem and generate better 3D results either by finetuning a multi-view diffusion model or training a fast feed-forward model. However, they still lack intricate textures and complex geometries due to inconsistency and limited generated resolution. To simultaneously achieve high fidelity, consistency, and efficiency in single image-to-3D, we propose a novel framework Unique3D that includes a multi-view diffusion model with a corresponding normal diffusion model to generate multi-view images with their normal maps, a multi-level upscale process to progressively improve the resolution of generated orthographic multi-views, as well as an instant and consistent mesh reconstruction algorithm called ISOMER, which fully integrates the color and geometric priors into mesh results. Extensive experiments demonstrate that our Unique3D significantly outperforms other image-to-3D baselines in terms of geometric and textural details.
Abstract:Recent advancements in Text-to-3D generation have yielded remarkable progress, particularly through methods that rely on Score Distillation Sampling (SDS). While SDS exhibits the capability to create impressive 3D assets, it is hindered by its inherent maximum-likelihood-seeking essence, resulting in limited diversity in generation outcomes. In this paper, we discover that the Denoise Diffusion Implicit Models (DDIM) generation process (\ie PF-ODE) can be succinctly expressed using an analogue of SDS loss. One step further, one can see SDS as a generalized DDIM generation process. Following this insight, we show that the noise sampling strategy in the noise addition stage significantly restricts the diversity of generation results. To address this limitation, we present an innovative noise sampling approach and introduce a novel text-to-3D method called Flow Score Distillation (FSD). Our validation experiments across various text-to-image Diffusion Models demonstrate that FSD substantially enhances generation diversity without compromising quality.
Abstract:To accommodate real-world dynamics, artificial intelligence systems need to cope with sequentially arriving content in an online manner. Beyond regular Continual Learning (CL) attempting to address catastrophic forgetting with offline training of each task, Online Continual Learning (OCL) is a more challenging yet realistic setting that performs CL in a one-pass data stream. Current OCL methods primarily rely on memory replay of old training samples. However, a notable gap from CL to OCL stems from the additional overfitting-underfitting dilemma associated with the use of rehearsal buffers: the inadequate learning of new training samples (underfitting) and the repeated learning of a few old training samples (overfitting). To this end, we introduce a novel approach, Multi-level Online Sequential Experts (MOSE), which cultivates the model as stacked sub-experts, integrating multi-level supervision and reverse self-distillation. Supervision signals across multiple stages facilitate appropriate convergence of the new task while gathering various strengths from experts by knowledge distillation mitigates the performance decline of old tasks. MOSE demonstrates remarkable efficacy in learning new samples and preserving past knowledge through multi-level experts, thereby significantly advancing OCL performance over state-of-the-art baselines (e.g., up to 7.3% on Split CIFAR-100 and 6.1% on Split Tiny-ImageNet).
Abstract:This paper presents ShapeLLM, the first 3D Multimodal Large Language Model (LLM) designed for embodied interaction, exploring a universal 3D object understanding with 3D point clouds and languages. ShapeLLM is built upon an improved 3D encoder by extending ReCon to ReCon++ that benefits from multi-view image distillation for enhanced geometry understanding. By utilizing ReCon++ as the 3D point cloud input encoder for LLMs, ShapeLLM is trained on constructed instruction-following data and tested on our newly human-curated evaluation benchmark, 3D MM-Vet. ReCon++ and ShapeLLM achieve state-of-the-art performance in 3D geometry understanding and language-unified 3D interaction tasks, such as embodied visual grounding.
Abstract:This paper presents DreamLLM, a learning framework that first achieves versatile Multimodal Large Language Models (MLLMs) empowered with frequently overlooked synergy between multimodal comprehension and creation. DreamLLM operates on two fundamental principles. The first focuses on the generative modeling of both language and image posteriors by direct sampling in the raw multimodal space. This approach circumvents the limitations and information loss inherent to external feature extractors like CLIP, and a more thorough multimodal understanding is obtained. Second, DreamLLM fosters the generation of raw, interleaved documents, modeling both text and image contents, along with unstructured layouts. This allows DreamLLM to learn all conditional, marginal, and joint multimodal distributions effectively. As a result, DreamLLM is the first MLLM capable of generating free-form interleaved content. Comprehensive experiments highlight DreamLLM's superior performance as a zero-shot multimodal generalist, reaping from the enhanced learning synergy.
Abstract:Conditional 3D generation is undergoing a significant advancement, enabling the free creation of 3D content from inputs such as text or 2D images. However, previous approaches have suffered from low inference efficiency, limited generation categories, and restricted downstream applications. In this work, we revisit the impact of different 3D representations on generation quality and efficiency. We propose a progressive generation method through Voxel-Point Progressive Representation (VPP). VPP leverages structured voxel representation in the proposed Voxel Semantic Generator and the sparsity of unstructured point representation in the Point Upsampler, enabling efficient generation of multi-category objects. VPP can generate high-quality 8K point clouds within 0.2 seconds. Additionally, the masked generation Transformer allows for various 3D downstream tasks, such as generation, editing, completion, and pre-training. Extensive experiments demonstrate that VPP efficiently generates high-fidelity and diverse 3D shapes across different categories, while also exhibiting excellent representation transfer performance. Codes will be released on https://github.com/qizekun/VPP.
Abstract:Geometry and color information provided by the point clouds are both crucial for 3D scene understanding. Two pieces of information characterize the different aspects of point clouds, but existing methods lack an elaborate design for the discrimination and relevance. Hence we explore a 3D self-supervised paradigm that can better utilize the relations of point cloud information. Specifically, we propose a universal 3D scene pre-training framework via Geometry-Color Contrast (Point-GCC), which aligns geometry and color information using a Siamese network. To take care of actual application tasks, we design (i) hierarchical supervision with point-level contrast and reconstruct and object-level contrast based on the novel deep clustering module to close the gap between pre-training and downstream tasks; (ii) architecture-agnostic backbone to adapt for various downstream models. Benefiting from the object-level representation associated with downstream tasks, Point-GCC can directly evaluate model performance and the result demonstrates the effectiveness of our methods. Transfer learning results on a wide range of tasks also show consistent improvements across all datasets. e.g., new state-of-the-art object detection results on SUN RGB-D and S3DIS datasets. Codes will be released at https://github.com/Asterisci/Point-GCC.
Abstract:The excellent performance of deep neural networks is usually accompanied by a large number of parameters and computations, which have limited their usage on the resource-limited edge devices. To address this issue, abundant methods such as pruning, quantization and knowledge distillation have been proposed to compress neural networks and achieved significant breakthroughs. However, most of these compression methods focus on the architecture or the training method of neural networks but ignore the influence from data augmentation. In this paper, we revisit the usage of data augmentation in model compression and give a comprehensive study on the relation between model sizes and their optimal data augmentation policy. To sum up, we mainly have the following three observations: (A) Models in different sizes prefer data augmentation with different magnitudes. Hence, in iterative pruning, data augmentation with varying magnitudes leads to better performance than data augmentation with a consistent magnitude. (B) Data augmentation with a high magnitude may significantly improve the performance of large models but harm the performance of small models. Fortunately, small models can still benefit from strong data augmentations by firstly learning them with "additional parameters" and then discard these "additional parameters" during inference. (C) The prediction of a pre-trained large model can be utilized to measure the difficulty of data augmentation. Thus it can be utilized as a criterion to design better data augmentation policies. We hope this paper may promote more research on the usage of data augmentation in model compression.
Abstract:Knowledge distillation conducts an effective model compression method while holding some limitations:(1) the feature based distillation methods only focus on distilling the feature map but are lack of transferring the relation of data examples; (2) the relational distillation methods are either limited to the handcrafted functions for relation extraction, such as L2 norm, or weak in inter- and intra- class relation modeling. Besides, the feature divergence of heterogeneous teacher-student architectures may lead to inaccurate relational knowledge transferring. In this work, we propose a novel training framework named Class-Oriented Relational Self Distillation (CORSD) to address the limitations. The trainable relation networks are designed to extract relation of structured data input, and they enable the whole model to better classify samples by transferring the relational knowledge from the deepest layer of the model to shallow layers. Besides, auxiliary classifiers are proposed to make relation networks capture class-oriented relation that benefits classification task. Experiments demonstrate that CORSD achieves remarkable improvements. Compared to baseline, 3.8%, 1.5% and 4.5% averaged accuracy boost can be observed on CIFAR100, ImageNet and CUB-200-2011, respectively.