Abstract:In many real-world optimization problems, we have prior information about what objective function values are achievable. In this paper, we study the scenario that we have either exact knowledge of the minimum value or a, possibly inexact, lower bound on its value. We propose bound-aware Bayesian optimization (BABO), a Bayesian optimization method that uses a new surrogate model and acquisition function to utilize such prior information. We present SlogGP, a new surrogate model that incorporates bound information and adapts the Expected Improvement (EI) acquisition function accordingly. Empirical results on a variety of benchmarks demonstrate the benefit of taking prior information about the optimal value into account, and that the proposed approach significantly outperforms existing techniques. Furthermore, we notice that even in the absence of prior information on the bound, the proposed SlogGP surrogate model still performs better than the standard GP model in most cases, which we explain by its larger expressiveness.
Abstract:Despite the success of various methods in addressing the issue of spatial reconstruction of dynamical systems with sparse observations, spatio-temporal prediction for sparse fields remains a challenge. Existing Kriging-based frameworks for spatio-temporal sparse field prediction fail to meet the accuracy and inference time required for nonlinear dynamic prediction problems. In this paper, we introduce the Dynamical System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework, an innovative methodology based on Voronoi tessellation which combines convolutional encoder-decoder (CED) and long short-term memory (LSTM) and utilizing Convolutional Long Short-Term Memory (ConvLSTM). By integrating Voronoi tessellations with spatio-temporal deep learning models, DSOVT is adept at predicting dynamical systems with unstructured, sparse, and time-varying observations. CED-LSTM maps Voronoi tessellations into a low-dimensional representation for time series prediction, while ConvLSTM directly uses these tessellations in an end-to-end predictive model. Furthermore, we incorporate physics constraints during the training process for dynamical systems with explicit formulas. Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics, thereby enhancing the robustness and accuracy of rolling forecasts. Numerical experiments on real sea surface data and shallow water systems clearly demonstrate our framework's accuracy and computational efficiency with sparse and time-varying observations.
Abstract:Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
Abstract:In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose \textbf{Physics3D}, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.
Abstract:In this work, we introduce Unique3D, a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images, featuring state-of-the-art generation fidelity and strong generalizability. Previous methods based on Score Distillation Sampling (SDS) can produce diversified 3D results by distilling 3D knowledge from large 2D diffusion models, but they usually suffer from long per-case optimization time with inconsistent issues. Recent works address the problem and generate better 3D results either by finetuning a multi-view diffusion model or training a fast feed-forward model. However, they still lack intricate textures and complex geometries due to inconsistency and limited generated resolution. To simultaneously achieve high fidelity, consistency, and efficiency in single image-to-3D, we propose a novel framework Unique3D that includes a multi-view diffusion model with a corresponding normal diffusion model to generate multi-view images with their normal maps, a multi-level upscale process to progressively improve the resolution of generated orthographic multi-views, as well as an instant and consistent mesh reconstruction algorithm called ISOMER, which fully integrates the color and geometric priors into mesh results. Extensive experiments demonstrate that our Unique3D significantly outperforms other image-to-3D baselines in terms of geometric and textural details.
Abstract:The mainstream paradigm of speech emotion recognition (SER) is identifying the single emotion label of the entire utterance. This line of works neglect the emotion dynamics at fine temporal granularity and mostly fail to leverage linguistic information of speech signal explicitly. In this paper, we propose Emotion Neural Transducer for fine-grained speech emotion recognition with automatic speech recognition (ASR) joint training. We first extend typical neural transducer with emotion joint network to construct emotion lattice for fine-grained SER. Then we propose lattice max pooling on the alignment lattice to facilitate distinguishing emotional and non-emotional frames. To adapt fine-grained SER to transducer inference manner, we further make blank, the special symbol of ASR, serve as underlying emotion indicator as well, yielding Factorized Emotion Neural Transducer. For typical utterance-level SER, our ENT models outperform state-of-the-art methods on IEMOCAP in low word error rate. Experiments on IEMOCAP and the latest speech emotion diarization dataset ZED also demonstrate the superiority of fine-grained emotion modeling. Our code is available at https://github.com/ECNU-Cross-Innovation-Lab/ENT.
Abstract:Recent years have witnessed the strong power of 3D generation models, which offer a new level of creative flexibility by allowing users to guide the 3D content generation process through a single image or natural language. However, it remains challenging for existing 3D generation methods to create subject-driven 3D content across diverse prompts. In this paper, we introduce a novel 3D customization method, dubbed Make-Your-3D that can personalize high-fidelity and consistent 3D content from only a single image of a subject with text description within 5 minutes. Our key insight is to harmonize the distributions of a multi-view diffusion model and an identity-specific 2D generative model, aligning them with the distribution of the desired 3D subject. Specifically, we design a co-evolution framework to reduce the variance of distributions, where each model undergoes a process of learning from the other through identity-aware optimization and subject-prior optimization, respectively. Extensive experiments demonstrate that our method can produce high-quality, consistent, and subject-specific 3D content with text-driven modifications that are unseen in subject image.
Abstract:Learning modality-fused representations and processing unaligned multimodal sequences are meaningful and challenging in multimodal emotion recognition. Existing approaches use directional pairwise attention or a message hub to fuse language, visual, and audio modalities. However, those approaches introduce information redundancy when fusing features and are inefficient without considering the complementarity of modalities. In this paper, we propose an efficient neural network to learn modality-fused representations with CB-Transformer (LMR-CBT) for multimodal emotion recognition from unaligned multimodal sequences. Specifically, we first perform feature extraction for the three modalities respectively to obtain the local structure of the sequences. Then, we design a novel transformer with cross-modal blocks (CB-Transformer) that enables complementary learning of different modalities, mainly divided into local temporal learning,cross-modal feature fusion and global self-attention representations. In addition, we splice the fused features with the original features to classify the emotions of the sequences. Finally, we conduct word-aligned and unaligned experiments on three challenging datasets, IEMOCAP, CMU-MOSI, and CMU-MOSEI. The experimental results show the superiority and efficiency of our proposed method in both settings. Compared with the mainstream methods, our approach reaches the state-of-the-art with a minimum number of parameters.
Abstract:The audio-video based multimodal emotion recognition has attracted a lot of attention due to its robust performance. Most of the existing methods focus on proposing different cross-modal fusion strategies. However, these strategies introduce redundancy in the features of different modalities without fully considering the complementary properties between modal information, and these approaches do not guarantee the non-loss of original semantic information during intra- and inter-modal interactions. In this paper, we propose a novel cross-modal fusion network based on self-attention and residual structure (CFN-SR) for multimodal emotion recognition. Firstly, we perform representation learning for audio and video modalities to obtain the semantic features of the two modalities by efficient ResNeXt and 1D CNN, respectively. Secondly, we feed the features of the two modalities into the cross-modal blocks separately to ensure efficient complementarity and completeness of information through the self-attention mechanism and residual structure. Finally, we obtain the output of emotions by splicing the obtained fused representation with the original representation. To verify the effectiveness of the proposed method, we conduct experiments on the RAVDESS dataset. The experimental results show that the proposed CFN-SR achieves the state-of-the-art and obtains 75.76% accuracy with 26.30M parameters. Our code is available at https://github.com/skeletonNN/CFN-SR.