Abstract:Recovering 3D scenes from sparse views is a challenging task due to its inherent ill-posed problem. Conventional methods have developed specialized solutions (e.g., geometry regularization or feed-forward deterministic model) to mitigate the issue. However, they still suffer from performance degradation by minimal overlap across input views with insufficient visual information. Fortunately, recent video generative models show promise in addressing this challenge as they are capable of generating video clips with plausible 3D structures. Powered by large pretrained video diffusion models, some pioneering research start to explore the potential of video generative prior and create 3D scenes from sparse views. Despite impressive improvements, they are limited by slow inference time and the lack of 3D constraint, leading to inefficiencies and reconstruction artifacts that do not align with real-world geometry structure. In this paper, we propose VideoScene to distill the video diffusion model to generate 3D scenes in one step, aiming to build an efficient and effective tool to bridge the gap from video to 3D. Specifically, we design a 3D-aware leap flow distillation strategy to leap over time-consuming redundant information and train a dynamic denoising policy network to adaptively determine the optimal leap timestep during inference. Extensive experiments demonstrate that our VideoScene achieves faster and superior 3D scene generation results than previous video diffusion models, highlighting its potential as an efficient tool for future video to 3D applications. Project Page: https://hanyang-21.github.io/VideoScene
Abstract:With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
Abstract:The study of Dynamic Facial Expression Recognition (DFER) is a nascent field of research that involves the automated recognition of facial expressions in video data. Although existing research has primarily focused on learning representations under noisy and hard samples, the issue of the coexistence of both types of samples remains unresolved. In order to overcome this challenge, this paper proposes a robust method of distinguishing between hard and noisy samples. This is achieved by evaluating the prediction agreement of the model on different sampled clips of the video. Subsequently, methodologies that reinforce the learning of hard samples and mitigate the impact of noisy samples can be employed. Moreover, to identify the principal expression in a video and enhance the model's capacity for representation learning, comprising a key expression re-sampling framework and a dual-stream hierarchical network is proposed, namely Robust Dynamic Facial Expression Recognition (RDFER). The key expression re-sampling framework is designed to identify the key expression, thereby mitigating the potential confusion caused by non-target expressions. RDFER employs two sequence models with the objective of disentangling short-term facial movements and long-term emotional changes. The proposed method has been shown to outperform current State-Of-The-Art approaches in DFER through extensive experimentation on benchmark datasets such as DFEW and FERV39K. A comprehensive analysis provides valuable insights and observations regarding the proposed agreement. This work has significant implications for the field of dynamic facial expression recognition and promotes the further development of the field of noise-consistent robust learning in dynamic facial expression recognition. The code is available from [https://github.com/Cross-Innovation-Lab/RDFER].
Abstract:Many real-world black-box optimization problems have multiple conflicting objectives. Rather than attempting to approximate the entire set of Pareto-optimal solutions, interactive preference learning allows to focus the search on the most relevant subset. However, few previous studies have exploited the fact that utility functions are usually monotonic. In this paper, we address the Bayesian Optimization with Preference Exploration (BOPE) problem and propose using a neural network ensemble as a utility surrogate model. This approach naturally integrates monotonicity and supports pairwise comparison data. Our experiments demonstrate that the proposed method outperforms state-of-the-art approaches and exhibits robustness to noise in utility evaluations. An ablation study highlights the critical role of monotonicity in enhancing performance.
Abstract:In many real-world optimization problems, we have prior information about what objective function values are achievable. In this paper, we study the scenario that we have either exact knowledge of the minimum value or a, possibly inexact, lower bound on its value. We propose bound-aware Bayesian optimization (BABO), a Bayesian optimization method that uses a new surrogate model and acquisition function to utilize such prior information. We present SlogGP, a new surrogate model that incorporates bound information and adapts the Expected Improvement (EI) acquisition function accordingly. Empirical results on a variety of benchmarks demonstrate the benefit of taking prior information about the optimal value into account, and that the proposed approach significantly outperforms existing techniques. Furthermore, we notice that even in the absence of prior information on the bound, the proposed SlogGP surrogate model still performs better than the standard GP model in most cases, which we explain by its larger expressiveness.
Abstract:Despite the success of various methods in addressing the issue of spatial reconstruction of dynamical systems with sparse observations, spatio-temporal prediction for sparse fields remains a challenge. Existing Kriging-based frameworks for spatio-temporal sparse field prediction fail to meet the accuracy and inference time required for nonlinear dynamic prediction problems. In this paper, we introduce the Dynamical System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework, an innovative methodology based on Voronoi tessellation which combines convolutional encoder-decoder (CED) and long short-term memory (LSTM) and utilizing Convolutional Long Short-Term Memory (ConvLSTM). By integrating Voronoi tessellations with spatio-temporal deep learning models, DSOVT is adept at predicting dynamical systems with unstructured, sparse, and time-varying observations. CED-LSTM maps Voronoi tessellations into a low-dimensional representation for time series prediction, while ConvLSTM directly uses these tessellations in an end-to-end predictive model. Furthermore, we incorporate physics constraints during the training process for dynamical systems with explicit formulas. Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics, thereby enhancing the robustness and accuracy of rolling forecasts. Numerical experiments on real sea surface data and shallow water systems clearly demonstrate our framework's accuracy and computational efficiency with sparse and time-varying observations.
Abstract:Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
Abstract:In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose \textbf{Physics3D}, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.
Abstract:In this work, we introduce Unique3D, a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images, featuring state-of-the-art generation fidelity and strong generalizability. Previous methods based on Score Distillation Sampling (SDS) can produce diversified 3D results by distilling 3D knowledge from large 2D diffusion models, but they usually suffer from long per-case optimization time with inconsistent issues. Recent works address the problem and generate better 3D results either by finetuning a multi-view diffusion model or training a fast feed-forward model. However, they still lack intricate textures and complex geometries due to inconsistency and limited generated resolution. To simultaneously achieve high fidelity, consistency, and efficiency in single image-to-3D, we propose a novel framework Unique3D that includes a multi-view diffusion model with a corresponding normal diffusion model to generate multi-view images with their normal maps, a multi-level upscale process to progressively improve the resolution of generated orthographic multi-views, as well as an instant and consistent mesh reconstruction algorithm called ISOMER, which fully integrates the color and geometric priors into mesh results. Extensive experiments demonstrate that our Unique3D significantly outperforms other image-to-3D baselines in terms of geometric and textural details.
Abstract:The mainstream paradigm of speech emotion recognition (SER) is identifying the single emotion label of the entire utterance. This line of works neglect the emotion dynamics at fine temporal granularity and mostly fail to leverage linguistic information of speech signal explicitly. In this paper, we propose Emotion Neural Transducer for fine-grained speech emotion recognition with automatic speech recognition (ASR) joint training. We first extend typical neural transducer with emotion joint network to construct emotion lattice for fine-grained SER. Then we propose lattice max pooling on the alignment lattice to facilitate distinguishing emotional and non-emotional frames. To adapt fine-grained SER to transducer inference manner, we further make blank, the special symbol of ASR, serve as underlying emotion indicator as well, yielding Factorized Emotion Neural Transducer. For typical utterance-level SER, our ENT models outperform state-of-the-art methods on IEMOCAP in low word error rate. Experiments on IEMOCAP and the latest speech emotion diarization dataset ZED also demonstrate the superiority of fine-grained emotion modeling. Our code is available at https://github.com/ECNU-Cross-Innovation-Lab/ENT.