Operational Research and Management Sciences Group, Warwick Business school, University of Warwick
Abstract:Bilevel optimization, a hierarchical mathematical framework where one optimization problem is nested within another, has emerged as a powerful tool for modeling complex decision-making processes in various fields such as economics, engineering, and machine learning. This paper focuses on bilevel optimization where both upper-level and lower-level functions are black boxes and expensive to evaluate. We propose a Bayesian Optimization framework that models the upper and lower-level functions as Gaussian processes over the combined space of upper and lower-level decisions, allowing us to exploit knowledge transfer between different sub-problems. Additionally, we propose a novel acquisition function for this model. Our experimental results demonstrate that the proposed algorithm is highly sample-efficient and outperforms existing methods in finding high-quality solutions.
Abstract:In many real-world optimization problems, we have prior information about what objective function values are achievable. In this paper, we study the scenario that we have either exact knowledge of the minimum value or a, possibly inexact, lower bound on its value. We propose bound-aware Bayesian optimization (BABO), a Bayesian optimization method that uses a new surrogate model and acquisition function to utilize such prior information. We present SlogGP, a new surrogate model that incorporates bound information and adapts the Expected Improvement (EI) acquisition function accordingly. Empirical results on a variety of benchmarks demonstrate the benefit of taking prior information about the optimal value into account, and that the proposed approach significantly outperforms existing techniques. Furthermore, we notice that even in the absence of prior information on the bound, the proposed SlogGP surrogate model still performs better than the standard GP model in most cases, which we explain by its larger expressiveness.
Abstract:Bayesian optimization is a sample-efficient method for solving expensive, black-box optimization problems. Stochastic programming concerns optimization under uncertainty where, typically, average performance is the quantity of interest. In the first stage of a two-stage problem, here-and-now decisions must be made in the face of this uncertainty, while in the second stage, wait-and-see decisions are made after the uncertainty has been resolved. Many methods in stochastic programming assume that the objective is cheap to evaluate and linear or convex. In this work, we apply Bayesian optimization to solve non-convex, two-stage stochastic programs which are expensive to evaluate. We formulate a knowledge-gradient-based acquisition function to jointly optimize the first- and second-stage variables, establish a guarantee of asymptotic consistency and provide a computationally efficient approximation. We demonstrate comparable empirical results to an alternative we formulate which alternates its focus between the two variable types, and superior empirical results over the standard, naive, two-step benchmark. We show that differences in the dimension and length scales between the variable types can lead to inefficiencies of the two-step algorithm, while the joint and alternating acquisition functions perform well in all problems tested. Experiments are conducted on both synthetic and real-world examples.
Abstract:This paper formulates a new Best-Arm Identification problem in the non-stationary stochastic bandits setting, where the means of all arms are shifted in the same way due to a global influence of the environment. The aim is to identify the unique best arm across environmental change given a fixed total budget. While this setting can be regarded as a special case of Adversarial Bandits or Corrupted Bandits, we demonstrate that existing solutions tailored to those settings do not fully utilise the nature of this global influence, and thus, do not work well in practice (despite their theoretical guarantees). To overcome this issue, in this paper we develop a novel selection policy that is consistent and robust in dealing with global environmental shifts. We then propose an allocation policy, LinLUCB, which exploits information about global shifts across all arms in each environment. Empirical tests depict a significant improvement in our policies against other existing methods.
Abstract:Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems. While meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored. This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios. This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments. To bridge this gap, this paper introduces the Dynamic Dataset Generator (DDG). DDG features multiple dynamic Gaussian components integrated with a range of heterogeneous, local, and global changes. These changes vary in spatial and temporal severity, patterns, and domain of influence, providing a comprehensive tool for simulating a wide range of dynamic scenarios.
Abstract:Many real-world optimization problems possess dynamic characteristics. Evolutionary dynamic optimization algorithms (EDOAs) aim to tackle the challenges associated with dynamic optimization problems. Looking at the existing works, the results reported for a given EDOA can sometimes be considerably different. This issue occurs because the source codes of many EDOAs, which are usually very complex algorithms, have not been made publicly available. Indeed, the complexity of components and mechanisms used in many EDOAs makes their re-implementation error-prone. In this paper, to assist researchers in performing experiments and comparing their algorithms against several EDOAs, we develop an open-source MATLAB platform for EDOAs, called Evolutionary Dynamic Optimization LABoratory (EDOLAB). This platform also contains an education module that can be used for educational purposes. In the education module, the user can observe a) a 2-dimensional problem space and how its morphology changes after each environmental change, b) the behaviors of individuals over time, and c) how the EDOA reacts to environmental changes and tries to track the moving optimum. In addition to being useful for research and education purposes, EDOLAB can also be used by practitioners to solve their real-world problems. The current version of EDOLAB includes 25 EDOAs and three fully-parametric benchmark generators. The MATLAB source code for EDOLAB is publicly available and can be accessed from [https://github.com/EDOLAB-platform/EDOLAB-MATLAB].
Abstract:The graph colouring problem consists of assigning labels, or colours, to the vertices of a graph such that no two adjacent vertices share the same colour. In this work we investigate whether deep reinforcement learning can be used to discover a competitive construction heuristic for graph colouring. Our proposed approach, ReLCol, uses deep Q-learning together with a graph neural network for feature extraction, and employs a novel way of parameterising the graph that results in improved performance. Using standard benchmark graphs with varied topologies, we empirically evaluate the benefits and limitations of the heuristic learned by ReLCol relative to existing construction algorithms, and demonstrate that reinforcement learning is a promising direction for further research on the graph colouring problem.
Abstract:Multi-objective Bayesian optimization aims to find the Pareto front of optimal trade-offs between a set of expensive objectives while collecting as few samples as possible. In some cases, it is possible to evaluate the objectives separately, and a different latency or evaluation cost can be associated with each objective. This presents an opportunity to learn the Pareto front faster by evaluating the cheaper objectives more frequently. We propose a scalarization based knowledge gradient acquisition function which accounts for the different evaluation costs of the objectives. We prove consistency of the algorithm and show empirically that it significantly outperforms a benchmark algorithm which always evaluates both objectives.
Abstract:Bayesian optimization is a powerful collection of methods for optimizing stochastic expensive black box functions. One key component of a Bayesian optimization algorithm is the acquisition function that determines which solution should be evaluated in every iteration. A popular and very effective choice is the Knowledge Gradient acquisition function, however there is no analytical way to compute it. Several different implementations make different approximations. In this paper, we review and compare the spectrum of Knowledge Gradient implementations and propose One-shot Hybrid KG, a new approach that combines several of the previously proposed ideas and is cheap to compute as well as powerful and efficient. We prove the new method preserves theoretical properties of previous methods and empirically show the drastically reduced computational overhead with equal or improved performance. All experiments are implemented in BOTorch and code is available on github.
Abstract:We consider multiobjective simulation optimization problems, where several conflicting objectives are optimized simultaneously, and can only be observed via stochastic simulation. The goal is to find or approximate a (discrete) set of Pareto-optimal solutions that reveal the essential trade-offs between the objectives, where optimality means that no objective can be improved without deteriorating the quality of any other objective. The noise in the observed performance may lead to two possible misclassification errors: solutions that are truly Pareto-optimal can be wrongly considered dominated, and solutions that are truly dominated can be wrongly considered Pareto-optimal. We propose a Bayesian multiobjective ranking and selection method to reduce the number of errors when identifying the solutions with the true best expected performance. We use stochastic kriging metamodels to build reliable predictive distributions of the objectives, and exploit this information in two efficient screening procedures and two novel sampling criteria. We use these in a sequential sampling algorithm to decide how to allocate samples. Experimental results show that the proposed method only requires a small fraction of samples compared to the standard allocation method, and it's competitive against the state-of-the-art, with the exploitation of the correlation structure being the dominant contributor to the improvement.