Abstract:This paper formulates a new Best-Arm Identification problem in the non-stationary stochastic bandits setting, where the means of all arms are shifted in the same way due to a global influence of the environment. The aim is to identify the unique best arm across environmental change given a fixed total budget. While this setting can be regarded as a special case of Adversarial Bandits or Corrupted Bandits, we demonstrate that existing solutions tailored to those settings do not fully utilise the nature of this global influence, and thus, do not work well in practice (despite their theoretical guarantees). To overcome this issue, in this paper we develop a novel selection policy that is consistent and robust in dealing with global environmental shifts. We then propose an allocation policy, LinLUCB, which exploits information about global shifts across all arms in each environment. Empirical tests depict a significant improvement in our policies against other existing methods.
Abstract:High-dimensional linear bandits with low-dimensional structure have received considerable attention in recent studies due to their practical significance. The most common structure in the literature is sparsity. However, it may not be available in practice. Symmetry, where the reward is invariant under certain groups of transformations on the set of arms, is another important inductive bias in the high-dimensional case that covers many standard structures, including sparsity. In this work, we study high-dimensional symmetric linear bandits where the symmetry is hidden from the learner, and the correct symmetry needs to be learned in an online setting. We examine the structure of a collection of hidden symmetry and provide a method based on model selection within the collection of low-dimensional subspaces. Our algorithm achieves a regret bound of $ O(d_0^{1/3} T^{2/3} \log(d))$, where $d$ is the ambient dimension which is potentially very large, and $d_0$ is the dimension of the true low-dimensional subspace such that $d_0 \ll d$. With an extra assumption on well-separated models, we can further improve the regret to $ O(d_0\sqrt{T\log(d)} )$.
Abstract:Reward allocation, also known as the credit assignment problem, has been an important topic in economics, engineering, and machine learning. An important concept in credit assignment is the core, which is the set of stable allocations where no agent has the motivation to deviate from the grand coalition. In this paper, we consider the stable allocation learning problem of stochastic cooperative games, where the reward function is characterised as a random variable with an unknown distribution. Given an oracle that returns a stochastic reward for an enquired coalition each round, our goal is to learn the expected core, that is, the set of allocations that are stable in expectation. Within the class of strictly convex games, we present an algorithm named \texttt{Common-Points-Picking} that returns a stable allocation given a polynomial number of samples, with high probability. The analysis of our algorithm involves the development of several new results in convex geometry, including an extension of the separation hyperplane theorem for multiple convex sets, and may be of independent interest.
Abstract:LARS and LAMB have emerged as prominent techniques in Large Batch Learning (LBL), ensuring the stability of AI training. One of the primary challenges in LBL is convergence stability, where the AI agent usually gets trapped into the sharp minimizer. Addressing this challenge, a relatively recent technique, known as warm-up, has been employed. However, warm-up lacks a strong theoretical foundation, leaving the door open for further exploration of more efficacious algorithms. In light of this situation, we conduct empirical experiments to analyze the behaviors of the two most popular optimizers in the LARS family: LARS and LAMB, with and without a warm-up strategy. Our analyses give us a comprehension of the novel LARS, LAMB, and the necessity of a warm-up technique in LBL. Building upon these insights, we propose a novel algorithm called Time Varying LARS (TVLARS), which facilitates robust training in the initial phase without the need for warm-up. Experimental evaluation demonstrates that TVLARS achieves competitive results with LARS and LAMB when warm-up is utilized while surpassing their performance without the warm-up technique.
Abstract:Despite a surge in interest in GNN development, homogeneity in benchmarking datasets still presents a fundamental issue to GNN research. GraphWorld is a recent solution which uses the Stochastic Block Model (SBM) to generate diverse populations of synthetic graphs for benchmarking any GNN task. Despite its success, the SBM imposed fundamental limitations on the kinds of graph structure GraphWorld could create. In this work we examine how two additional synthetic graph generators can improve GraphWorld's evaluation; LFR, a well-established model in the graph clustering literature and CABAM, a recent adaptation of the Barabasi-Albert model tailored for GNN benchmarking. By integrating these generators, we significantly expand the coverage of graph space within the GraphWorld framework while preserving key graph properties observed in real-world networks. To demonstrate their effectiveness, we generate 300,000 graphs to benchmark 11 GNN models on a node classification task. We find GNN performance variations in response to homophily, degree distribution and feature signal. Based on these findings, we classify models by their sensitivity to the new generators under these properties. Additionally, we release the extensions made to GraphWorld on the GitHub repository, offering further evaluation of GNN performance on new graphs.
Abstract:Modeling and simulations of pandemic dynamics play an essential role in understanding and addressing the spreading of highly infectious diseases such as COVID-19. In this work, we propose a novel deep learning architecture named Attention-based Multiresolution Graph Neural Networks (ATMGNN) that learns to combine the spatial graph information, i.e. geographical data, with the temporal information, i.e. timeseries data of number of COVID-19 cases, to predict the future dynamics of the pandemic. The key innovation is that our method can capture the multiscale structures of the spatial graph via a learning to cluster algorithm in a data-driven manner. This allows our architecture to learn to pick up either local or global signals of a pandemic, and model both the long-range spatial and temporal dependencies. Importantly, we collected and assembled a new dataset for New Zealand. We established a comprehensive benchmark of statistical methods, temporal architectures, graph neural networks along with our spatio-temporal model. We also incorporated socioeconomic cross-sectional data to further enhance our prediction. Our proposed model have shown highly robust predictions and outperformed all other baselines in various metrics for our new dataset of New Zealand along with existing datasets of England, France, Italy and Spain. For a future work, we plan to extend our work for real-time prediction and global scale. Our data and source code are publicly available at https://github.com/HySonLab/pandemic_tgnn
Abstract:We study online learning problems in which the learner has extra knowledge about the adversary's behaviour, i.e., in game-theoretic settings where opponents typically follow some no-external regret learning algorithms. Under this assumption, we propose two new online learning algorithms, Accurate Follow the Regularized Leader (AFTRL) and Prod-Best Response (Prod-BR), that intensively exploit this extra knowledge while maintaining the no-regret property in the worst-case scenario of having inaccurate extra information. Specifically, AFTRL achieves $O(1)$ external regret or $O(1)$ \emph{forward regret} against no-external regret adversary in comparison with $O(\sqrt{T})$ \emph{dynamic regret} of Prod-BR. To the best of our knowledge, our algorithm is the first to consider forward regret that achieves $O(1)$ regret against strategic adversaries. When playing zero-sum games with Accurate Multiplicative Weights Update (AMWU), a special case of AFTRL, we achieve \emph{last round convergence} to the Nash Equilibrium. We also provide numerical experiments to further support our theoretical results. In particular, we demonstrate that our methods achieve significantly better regret bounds and rate of last round convergence, compared to the state of the art (e.g., Multiplicative Weights Update (MWU) and its optimistic counterpart, OMWU).
Abstract:Symmetry arises in many optimization and decision-making problems, and has attracted considerable attention from the optimization community: By utilizing the existence of such symmetries, the process of searching for optimal solutions can be improved significantly. Despite its success in (offline) optimization, the utilization of symmetries has not been well examined within the online optimization settings, especially in the bandit literature. As such, in this paper we study the invariant Lipschitz bandit setting, a subclass of the Lipschitz bandits where the reward function and the set of arms are preserved under a group of transformations. We introduce an algorithm named \texttt{UniformMesh-N}, which naturally integrates side observations using group orbits into the \texttt{UniformMesh} algorithm (\cite{Kleinberg2005_UniformMesh}), which uniformly discretizes the set of arms. Using the side-observation approach, we prove an improved regret upper bound, which depends on the cardinality of the group, given that the group is finite. We also prove a matching regret's lower bound for the invariant Lipschitz bandit class (up to logarithmic factors). We hope that our work will ignite further investigation of symmetry in bandit theory and sequential decision-making theory in general.
Abstract:Motivated by cognitive radios, stochastic Multi-Player Multi-Armed Bandits has been extensively studied in recent years. In this setting, each player pulls an arm, and receives a reward corresponding to the arm if there is no collision, namely the arm was selected by one single player. Otherwise, the player receives no reward if collision occurs. In this paper, we consider the presence of malicious players (or attackers) who obstruct the cooperative players (or defenders) from maximizing their rewards, by deliberately colliding with them. We provide the first decentralized and robust algorithm RESYNC for defenders whose performance deteriorates gracefully as $\tilde{O}(C)$ as the number of collisions $C$ from the attackers increases. We show that this algorithm is order-optimal by proving a lower bound which scales as $\Omega(C)$. This algorithm is agnostic to the algorithm used by the attackers and agnostic to the number of collisions $C$ faced from attackers.
Abstract:In real-world applications, Federated Learning (FL) meets two challenges: (1) scalability, especially when applied to massive IoT networks; and (2) how to be robust against an environment with heterogeneous data. Realizing the first problem, we aim to design a novel FL framework named Full-stack FL (F2L). More specifically, F2L utilizes a hierarchical network architecture, making extending the FL network accessible without reconstructing the whole network system. Moreover, leveraging the advantages of hierarchical network design, we propose a new label-driven knowledge distillation (LKD) technique at the global server to address the second problem. As opposed to current knowledge distillation techniques, LKD is capable of training a student model, which consists of good knowledge from all teachers' models. Therefore, our proposed algorithm can effectively extract the knowledge of the regions' data distribution (i.e., the regional aggregated models) to reduce the divergence between clients' models when operating under the FL system with non-independent identically distributed data. Extensive experiment results reveal that: (i) our F2L method can significantly improve the overall FL efficiency in all global distillations, and (ii) F2L rapidly achieves convergence as global distillation stages occur instead of increasing on each communication cycle.