Abstract:Adversarial machine learning concerns situations in which learners face attacks from active adversaries. Such scenarios arise in applications such as spam email filtering, malware detection and fake-image generation, where security methods must be actively updated to keep up with the ever improving generation of malicious data.We model these interactions between the learner and the adversary as a game and formulate the problem as a pessimistic bilevel optimisation problem with the learner taking the role of the leader. The adversary, modelled as a stochastic data generator, takes the role of the follower, generating data in response to the classifier. While existing models rely on the assumption that the adversary will choose the least costly solution leading to a convex lower-level problem with a unique solution, we present a novel model and solution method which do not make such assumptions. We compare these to the existing approach and see significant improvements in performance suggesting that relaxing these assumptions leads to a more realistic model.
Abstract:The proliferation of the Internet of Things (IoT) has raised concerns about the security of connected devices. There is a need to develop suitable and cost-efficient methods to identify vulnerabilities in IoT devices in order to address them before attackers seize opportunities to compromise them. The deception technique is a prominent approach to improving the security posture of IoT systems. Honeypot is a popular deception technique that mimics interaction in real fashion and encourages unauthorised users (attackers) to launch attacks. Due to the large number and the heterogeneity of IoT devices, manually crafting the low and high-interaction honeypots is not affordable. This has forced researchers to seek innovative ways to build honeypots for IoT devices. In this paper, we propose a honeypot for IoT devices that uses machine learning techniques to learn and interact with attackers automatically. The evaluation of the proposed model indicates that our system can improve the session length with attackers and capture more attacks on the IoT network.
Abstract:We study online learning problems in which the learner has extra knowledge about the adversary's behaviour, i.e., in game-theoretic settings where opponents typically follow some no-external regret learning algorithms. Under this assumption, we propose two new online learning algorithms, Accurate Follow the Regularized Leader (AFTRL) and Prod-Best Response (Prod-BR), that intensively exploit this extra knowledge while maintaining the no-regret property in the worst-case scenario of having inaccurate extra information. Specifically, AFTRL achieves $O(1)$ external regret or $O(1)$ \emph{forward regret} against no-external regret adversary in comparison with $O(\sqrt{T})$ \emph{dynamic regret} of Prod-BR. To the best of our knowledge, our algorithm is the first to consider forward regret that achieves $O(1)$ regret against strategic adversaries. When playing zero-sum games with Accurate Multiplicative Weights Update (AMWU), a special case of AFTRL, we achieve \emph{last round convergence} to the Nash Equilibrium. We also provide numerical experiments to further support our theoretical results. In particular, we demonstrate that our methods achieve significantly better regret bounds and rate of last round convergence, compared to the state of the art (e.g., Multiplicative Weights Update (MWU) and its optimistic counterpart, OMWU).