Abstract:Multi-agent reinforcement learning (MARL) methods, while effective in zero-sum or positive-sum games, often yield suboptimal outcomes in general-sum games where cooperation is essential for achieving globally optimal outcomes. Matrix game social dilemmas, which abstract key aspects of general-sum interactions, such as cooperation, risk, and trust, fail to model the temporal and spatial dynamics characteristic of real-world scenarios. In response, our study extends matrix game social dilemmas into more complex, higher-dimensional MARL environments. We adapt a gridworld implementation of the Stag Hunt dilemma to more closely match the decision-space of a one-shot matrix game while also introducing variable environment complexity. Our findings indicate that as complexity increases, MARL agents trained in these environments converge to suboptimal strategies, consistent with the risk-dominant Nash equilibria strategies found in matrix games. Our work highlights the impact of environment complexity on achieving optimal outcomes in higher-dimensional game-theoretic MARL environments.
Abstract:Despite a surge in interest in GNN development, homogeneity in benchmarking datasets still presents a fundamental issue to GNN research. GraphWorld is a recent solution which uses the Stochastic Block Model (SBM) to generate diverse populations of synthetic graphs for benchmarking any GNN task. Despite its success, the SBM imposed fundamental limitations on the kinds of graph structure GraphWorld could create. In this work we examine how two additional synthetic graph generators can improve GraphWorld's evaluation; LFR, a well-established model in the graph clustering literature and CABAM, a recent adaptation of the Barabasi-Albert model tailored for GNN benchmarking. By integrating these generators, we significantly expand the coverage of graph space within the GraphWorld framework while preserving key graph properties observed in real-world networks. To demonstrate their effectiveness, we generate 300,000 graphs to benchmark 11 GNN models on a node classification task. We find GNN performance variations in response to homophily, degree distribution and feature signal. Based on these findings, we classify models by their sensitivity to the new generators under these properties. Additionally, we release the extensions made to GraphWorld on the GitHub repository, offering further evaluation of GNN performance on new graphs.