Abstract:In this paper, we address the critical need for interpretable and uncertainty-aware machine learning models in the context of online learning for high-risk industries, particularly cyber-security. While deep learning and other complex models have demonstrated impressive predictive capabilities, their opacity and lack of uncertainty quantification present significant questions about their trustworthiness. We propose a novel pipeline for online supervised learning problems in cyber-security, that harnesses the inherent interpretability and uncertainty awareness of Additive Gaussian Processes (AGPs) models. Our approach aims to balance predictive performance with transparency while improving the scalability of AGPs, which represents their main drawback, potentially enabling security analysts to better validate threat detection, troubleshoot and reduce false positives, and generally make trustworthy, informed decisions. This work contributes to the growing field of interpretable AI by proposing a class of models that can be significantly beneficial for high-stake decision problems such as the ones typical of the cyber-security domain. The source code is available.
Abstract:In this paper we consider the contextual bandit problem with a finite (or infinite and clustered) context set. We consider the fully adversarial problem in which, apart from having bounded losses, there are no assumptions whatsoever on the generation of the contexts and losses. In our problem we assume that the context set is partitioned into a set of protected groups. At the start of each trial we are given a probability distribution over the context set and are required (on that trial) to be fair with respect to that distribution, in that if the context (for that trial) was drawn from the distribution then our choice of action would be unbiased towards any protected group. We develop an algorithm FexEx for this problem which has remarkable efficiency, having a space and per-trial time complexity at most linear in the dimensionality of the policy space. FexEx can handle non-stationarity, in that its regret can be bounded with respect to any sequence of policies satisfying the fairness constraints. For such a sequence the regret bound of FexEx is essentially the same as that of running Exp3.S for each context independently (an approach that does not satisfy the fairness constraints).
Abstract:We evaluate OpenAI's o1-preview and o1-mini models, benchmarking their performance against the earlier GPT-4o model. Our evaluation focuses on their ability to detect vulnerabilities in real-world software by generating structured inputs that trigger known sanitizers. Using DARPA's AI Cyber Challenge (AIxCC) framework and the Nginx challenge project--a deliberately modified version of the widely-used Nginx web server--we create a well-defined yet complex environment for testing LLMs on automated vulnerability detection (AVD) tasks. Our results show that the o1-preview model significantly outperforms GPT-4o in both success rate and efficiency, especially in more complex scenarios.
Abstract:A significant challenge for autonomous cyber defence is ensuring a defensive agent's ability to generalise across diverse network topologies and configurations. This capability is necessary for agents to remain effective when deployed in dynamically changing environments, such as an enterprise network where devices may frequently join and leave. Standard approaches to deep reinforcement learning, where policies are parameterised using a fixed-input multi-layer perceptron (MLP) expect fixed-size observation and action spaces. In autonomous cyber defence, this makes it hard to develop agents that generalise to environments with network topologies different from those trained on, as the number of nodes affects the natural size of the observation and action spaces. To overcome this limitation, we reframe the problem of autonomous network defence using entity-based reinforcement learning, where the observation and action space of an agent are decomposed into a collection of discrete entities. This framework enables the use of policy parameterisations specialised in compositional generalisation. Namely, we train a Transformer-based policy on the Yawning Titan cyber-security simulation environment and test its generalisation capabilities across various network topologies. We demonstrate that this approach significantly outperforms an MLP-based policy on fixed networks, and has the ability for zero-shot generalisation to networks of a different size to those seen in training. These findings highlight the potential for entity-based reinforcement learning to advance the field of autonomous cyber defence by providing more generalisable policies capable of handling variations in real-world network environments.
Abstract:CybORG++ is an advanced toolkit for reinforcement learning research focused on network defence. Building on the CAGE 2 CybORG environment, it introduces key improvements, including enhanced debugging capabilities, refined agent implementation support, and a streamlined environment that enables faster training and easier customisation. Along with addressing several software bugs from its predecessor, CybORG++ introduces MiniCAGE, a lightweight version of CAGE 2, which improves performance dramatically, up to 1000x faster execution in parallel iterations, without sacrificing accuracy or core functionality. CybORG++ serves as a robust platform for developing and evaluating defensive agents, making it a valuable resource for advancing enterprise network defence research.
Abstract:In the network security arms race, the defender is significantly disadvantaged as they need to successfully detect and counter every malicious attack. In contrast, the attacker needs to succeed only once. To level the playing field, we investigate the effectiveness of autonomous agents in a realistic network defence scenario. We first outline the problem, provide the background on reinforcement learning and detail our proposed agent design. Using a network environment simulation, with 13 hosts spanning 3 subnets, we train a novel reinforcement learning agent and show that it can reliably defend continual attacks by two advanced persistent threat (APT) red agents: one with complete knowledge of the network layout and another which must discover resources through exploration but is more general.
Abstract:Multi-agent reinforcement learning (MARL) methods, while effective in zero-sum or positive-sum games, often yield suboptimal outcomes in general-sum games where cooperation is essential for achieving globally optimal outcomes. Matrix game social dilemmas, which abstract key aspects of general-sum interactions, such as cooperation, risk, and trust, fail to model the temporal and spatial dynamics characteristic of real-world scenarios. In response, our study extends matrix game social dilemmas into more complex, higher-dimensional MARL environments. We adapt a gridworld implementation of the Stag Hunt dilemma to more closely match the decision-space of a one-shot matrix game while also introducing variable environment complexity. Our findings indicate that as complexity increases, MARL agents trained in these environments converge to suboptimal strategies, consistent with the risk-dominant Nash equilibria strategies found in matrix games. Our work highlights the impact of environment complexity on achieving optimal outcomes in higher-dimensional game-theoretic MARL environments.
Abstract:This paper investigates the threat of backdoors in Deep Reinforcement Learning (DRL) agent policies and proposes a novel method for their detection at runtime. Our study focuses on elusive in-distribution backdoor triggers. Such triggers are designed to induce a deviation in the behaviour of a backdoored agent while blending into the expected data distribution to evade detection. Through experiments conducted in the Atari Breakout environment, we demonstrate the limitations of current sanitisation methods when faced with such triggers and investigate why they present a challenging defence problem. We then evaluate the hypothesis that backdoor triggers might be easier to detect in the neural activation space of the DRL agent's policy network. Our statistical analysis shows that indeed the activation patterns in the agent's policy network are distinct in the presence of a trigger, regardless of how well the trigger is concealed in the environment. Based on this, we propose a new defence approach that uses a classifier trained on clean environment samples and detects abnormal activations. Our results show that even lightweight classifiers can effectively prevent malicious actions with considerable accuracy, indicating the potential of this research direction even against sophisticated adversaries.
Abstract:We consider the classic problem of online convex optimisation. Whereas the notion of static regret is relevant for stationary problems, the notion of switching regret is more appropriate for non-stationary problems. A switching regret is defined relative to any segmentation of the trial sequence, and is equal to the sum of the static regrets of each segment. In this paper we show that, perhaps surprisingly, we can achieve the asymptotically optimal switching regret on every possible segmentation simultaneously. Our algorithm for doing so is very efficient: having a space and per-trial time complexity that is logarithmic in the time-horizon. Our algorithm also obtains novel bounds on its dynamic regret: being adaptive to variations in the rate of change of the comparator sequence.
Abstract:We study the problem of efficiently detecting Out-of-Distribution (OOD) samples at test time in supervised and unsupervised learning contexts. While ML models are typically trained under the assumption that training and test data stem from the same distribution, this is often not the case in realistic settings, thus reliably detecting distribution shifts is crucial at deployment. We re-formulate the OOD problem under the lenses of statistical testing and then discuss conditions that render the OOD problem identifiable in statistical terms. Building on this framework, we study convergence guarantees of an OOD test based on the Wasserstein distance, and provide a simple empirical evaluation.