Abstract:While much work on web agents emphasizes the promise of autonomously performing tasks on behalf of users, in reality, agents often fall short on complex tasks in real-world contexts and modeling user preference. This presents an opportunity for humans to collaborate with the agent and leverage the agent's capabilities effectively. We propose CowPilot, a framework supporting autonomous as well as human-agent collaborative web navigation, and evaluation across task success and task efficiency. CowPilot reduces the number of steps humans need to perform by allowing agents to propose next steps, while users are able to pause, reject, or take alternative actions. During execution, users can interleave their actions with the agent by overriding suggestions or resuming agent control when needed. We conducted case studies on five common websites and found that the human-agent collaborative mode achieves the highest success rate of 95% while requiring humans to perform only 15.2% of the total steps. Even with human interventions during task execution, the agent successfully drives up to half of task success on its own. CowPilot can serve as a useful tool for data collection and agent evaluation across websites, which we believe will enable research in how users and agents can work together. Video demonstrations are available at https://oaishi.github.io/cowpilot.html
Abstract:Whether a large language model policy is an explicit constitution or an implicit reward model, it is challenging to assess coverage over the unbounded set of real-world situations that a policy must contend with. We introduce an AI policy design process inspired by mapmaking, which has developed tactics for visualizing and iterating on maps even when full coverage is not possible. With Policy Projector, policy designers can survey the landscape of model input-output pairs, define custom regions (e.g., "violence"), and navigate these regions with rules that can be applied to LLM outputs (e.g., if output contains "violence" and "graphic details," then rewrite without "graphic details"). Policy Projector supports interactive policy authoring using LLM classification and steering and a map visualization reflecting the policy designer's work. In an evaluation with 12 AI safety experts, our system helps policy designers to address problematic model behaviors extending beyond an existing, comprehensive harm taxonomy.
Abstract:Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.
Abstract:Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs. Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model. In this paper, we explore the use of automated feedback (compilers and multi-modal models) to guide LLMs to generate high-quality UI code. Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset using an original model, applying automated tools to aggressively filter, score, and de-duplicate the data into a refined higher quality dataset. The original LLM is improved by finetuning on this refined dataset. We applied our approach to several open-source LLMs and compared the resulting performance to baseline models with both automated metrics and human preferences. Our evaluation shows the resulting models outperform all other downloadable baselines and approach the performance of larger proprietary models.
Abstract:In this paper, we explore the design and use of conversational telepresence robots to help homebound older adults interact with the external world. An initial needfinding study (N=8) using video vignettes revealed older adults' experiential needs for robot-mediated remote experiences such as exploration, reminiscence and social participation. We then designed a prototype system to support these goals and conducted a technology probe study (N=11) to garner a deeper understanding of user preferences for remote experiences. The study revealed user interactive patterns in each desired experience, highlighting the need of robot guidance, social engagements with the robot and the remote bystanders. Our work identifies a novel design space where conversational telepresence robots can be used to foster meaningful interactions in the remote physical environment. We offer design insights into the robot's proactive role in providing guidance and using dialogue to create personalized, contextualized and meaningful experiences.
Abstract:User interface (UI) design is a difficult yet important task for ensuring the usability, accessibility, and aesthetic qualities of applications. In our paper, we develop a machine-learned model, UIClip, for assessing the design quality and visual relevance of a UI given its screenshot and natural language description. To train UIClip, we used a combination of automated crawling, synthetic augmentation, and human ratings to construct a large-scale dataset of UIs, collated by description and ranked by design quality. Through training on the dataset, UIClip implicitly learns properties of good and bad designs by i) assigning a numerical score that represents a UI design's relevance and quality and ii) providing design suggestions. In an evaluation that compared the outputs of UIClip and other baselines to UIs rated by 12 human designers, we found that UIClip achieved the highest agreement with ground-truth rankings. Finally, we present three example applications that demonstrate how UIClip can facilitate downstream applications that rely on instantaneous assessment of UI design quality: i) UI code generation, ii) UI design tips generation, and iii) quality-aware UI example search.
Abstract:Generative AI platforms and features are permeating many aspects of work. Entrepreneurs from lean economies in particular are well positioned to outsource tasks to generative AI given limited resources. In this paper, we work to address a growing disparity in use of these technologies by building on a four-year partnership with a local entrepreneurial hub dedicated to equity in tech and entrepreneurship. Together, we co-designed an interactive workshops series aimed to onboard local entrepreneurs to generative AI platforms. Alongside four community-driven and iterative workshops with entrepreneurs across five months, we conducted interviews with 15 local entrepreneurs and community providers. We detail the importance of communal and supportive exposure to generative AI tools for local entrepreneurs, scaffolding actionable use (and supporting non-use), demystifying generative AI technologies by emphasizing entrepreneurial power, while simultaneously deconstructing the veneer of simplicity to address the many operational skills needed for successful application.
Abstract:LLMs can generate factually incorrect statements even when provided access to reference documents. Such errors can be dangerous in high-stakes applications (e.g., document-grounded QA for healthcare or finance). We present GenAudit -- a tool intended to assist fact-checking LLM responses for document-grounded tasks. GenAudit suggests edits to the LLM response by revising or removing claims that are not supported by the reference document, and also presents evidence from the reference for facts that do appear to have support. We train models to execute these tasks, and design an interactive interface to present suggested edits and evidence to users. Comprehensive evaluation by human raters shows that GenAudit can detect errors in 8 different LLM outputs when summarizing documents from diverse domains. To ensure that most errors are flagged by the system, we propose a method that can increase the error recall while minimizing impact on precision. We will release our tool (GenAudit) and fact-checking model for public use.
Abstract:Large language models (LLMs) that have been trained on a corpus that includes large amount of code exhibit a remarkable ability to understand HTML code. As web interfaces are primarily constructed using HTML, we design an in-depth study to see how LLMs can be used to retrieve and locate important elements for a user given query (i.e. task description) in a web interface. In contrast with prior works, which primarily focused on autonomous web navigation, we decompose the problem as an even atomic operation - Can LLMs identify the important information in the web page for a user given query? This decomposition enables us to scrutinize the current capabilities of LLMs and uncover the opportunities and challenges they present. Our empirical experiments show that while LLMs exhibit a reasonable level of performance in retrieving important UI elements, there is still a substantial room for improvement. We hope our investigation will inspire follow-up works in overcoming the current challenges in this domain.
Abstract:Many consumer speech recognition systems are not tuned for people with speech disabilities, resulting in poor recognition and user experience, especially for severe speech differences. Recent studies have emphasized interest in personalized speech models from people with atypical speech patterns. We propose a query-by-example-based personalized phrase recognition system that is trained using small amounts of speech, is language agnostic, does not assume a traditional pronunciation lexicon, and generalizes well across speech difference severities. On an internal dataset collected from 32 people with dysarthria, this approach works regardless of severity and shows a 60% improvement in recall relative to a commercial speech recognition system. On the public EasyCall dataset of dysarthric speech, our approach improves accuracy by 30.5%. Performance degrades as the number of phrases increases, but consistently outperforms ASR systems when trained with 50 unique phrases.