Abstract:Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.
Abstract:Do large language models (LLMs) genuinely understand the semantics of the language, or just memorize the training data? The recent concern on potential data contamination of LLMs has raised awareness of the community to conduct research on LLMs evaluation. In this paper, we propose MSTemp, an approach that creates meta semantic templates to evaluate the semantic understanding ability of LLMs. The core of MSTemp is not to perform evaluation directly on existing benchmark datasets, but to generate new out-of-distribution (OOD) evaluation sets using existing datasets as seeds. Specifically, for a given sentence, MSTemp leverages another language model to generate new samples while preserving its semantics. The new samples are called semantic templates to the original sentence. Then, MSTemp generates evaluation samples via sentence parsing and random word replacement on the semantic templates. MSTemp is highly flexible, dynamic, and cost-effective. Our initial experiments show that MSTemp-generated samples can significantly reduce the performance of LLMs using existing datasets as seeds. We hope this initial work can shed light on future research of LLMs evaluation.
Abstract:Recent work has shown that standard training via empirical risk minimization (ERM) can produce models that achieve high accuracy on average but low accuracy on underrepresented groups due to the prevalence of spurious features. A predominant approach to tackle this group robustness problem minimizes the worst group error (akin to a minimax strategy) on the training data, hoping it will generalize well on the testing data. However, this is often suboptimal, especially when the out-of-distribution (OOD) test data contains previously unseen groups. Inspired by ideas from the information retrieval and learning-to-rank literature, this paper first proposes to use Discounted Cumulative Gain (DCG) as a metric of model quality for facilitating better hyperparameter tuning and model selection. Being a ranking-based metric, DCG weights multiple poorly-performing groups (instead of considering just the group with the worst performance). As a natural next step, we build on our results to propose a ranking-based training method called Discounted Rank Upweighting (DRU), which differentially reweights a ranked list of poorly-performing groups in the training data to learn models that exhibit strong OOD performance on the test data. Results on several synthetic and real-world datasets highlight the superior generalization ability of our group-ranking-based (akin to soft-minimax) approach in selecting and learning models that are robust to group distributional shifts.