Abstract:Parameter-efficient fine-tuning (PEFT) for personalizing automatic speech recognition (ASR) has recently shown promise for adapting general population models to atypical speech. However, these approaches assume a priori knowledge of the atypical speech disorder being adapted for -- the diagnosis of which requires expert knowledge that is not always available. Even given this knowledge, data scarcity and high inter/intra-speaker variability further limit the effectiveness of traditional fine-tuning. To circumvent these challenges, we first identify the minimal set of model parameters required for ASR adaptation. Our analysis of each individual parameter's effect on adaptation performance allows us to reduce Word Error Rate (WER) by half while adapting 0.03% of all weights. Alleviating the need for cohort-specific models, we next propose the novel use of a meta-learned hypernetwork to generate highly individualized, utterance-level adaptations on-the-fly for a diverse set of atypical speech characteristics. Evaluating adaptation at the global, cohort and individual-level, we show that hypernetworks generalize better to out-of-distribution speakers, while maintaining an overall relative WER reduction of 75.2% using 0.1% of the full parameter budget.
Abstract:Many consumer speech recognition systems are not tuned for people with speech disabilities, resulting in poor recognition and user experience, especially for severe speech differences. Recent studies have emphasized interest in personalized speech models from people with atypical speech patterns. We propose a query-by-example-based personalized phrase recognition system that is trained using small amounts of speech, is language agnostic, does not assume a traditional pronunciation lexicon, and generalizes well across speech difference severities. On an internal dataset collected from 32 people with dysarthria, this approach works regardless of severity and shows a 60% improvement in recall relative to a commercial speech recognition system. On the public EasyCall dataset of dysarthric speech, our approach improves accuracy by 30.5%. Performance degrades as the number of phrases increases, but consistently outperforms ASR systems when trained with 50 unique phrases.