Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:The generalization of monocular metric depth estimation (MMDE) has been a longstanding challenge. Recent methods made progress by combining relative and metric depth or aligning input image focal length. However, they are still beset by challenges in camera, scene, and data levels: (1) Sensitivity to different cameras; (2) Inconsistent accuracy across scenes; (3) Reliance on massive training data. This paper proposes SM4Depth, a seamless MMDE method, to address all the issues above within a single network. First, we reveal that a consistent field of view (FOV) is the key to resolve ``metric ambiguity'' across cameras, which guides us to propose a more straightforward preprocessing unit. Second, to achieve consistently high accuracy across scenes, we explicitly model the metric scale determination as discretizing the depth interval into bins and propose variation-based unnormalized depth bins. This method bridges the depth gap of diverse scenes by reducing the ambiguity of the conventional metric bin. Third, to reduce the reliance on massive training data, we propose a ``divide and conquer" solution. Instead of estimating directly from the vast solution space, the correct metric bins are estimated from multiple solution sub-spaces for complexity reduction. Finally, with just 150K RGB-D pairs and a consumer-grade GPU for training, SM4Depth achieves state-of-the-art performance on most previously unseen datasets, especially surpassing ZoeDepth and Metric3D on mRI$_\theta$. The code can be found at https://github.com/1hao-Liu/SM4Depth.
Abstract:Recently, neural networks (NN) have made great strides in combinatorial optimization. However, they face challenges when solving the capacitated arc routing problem (CARP) which is to find the minimum-cost tour covering all required edges on a graph, while within capacity constraints. In tackling CARP, NN-based approaches tend to lag behind advanced metaheuristics, since they lack directed arc modeling and efficient learning methods tailored for complex CARP. In this paper, we introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics while exhibiting superior efficiency. First, we propose the direction-aware attention model (DaAM) to incorporate directionality into the embedding process, facilitating more effective one-stage decision-making. Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy for subsequent reinforcement fine-tuning. It proves particularly valuable for solving CARP that has a higher complexity than the node routing problems (NRPs). Finally, a path optimization method is proposed to adjust the depot return positions within the path generated by DaAM. Experiments illustrate that our approach surpasses heuristics and achieves decision quality comparable to state-of-the-art metaheuristics for the first time while maintaining superior efficiency.
Abstract:High Dynamic Range (HDR) imaging aims to generate an artifact-free HDR image with realistic details by fusing multi-exposure Low Dynamic Range (LDR) images. Caused by large motion and severe under-/over-exposure among input LDR images, HDR imaging suffers from ghosting artifacts and fusion distortions. To address these critical issues, we propose an HDR Transformer Deformation Convolution (HDRTransDC) network to generate high-quality HDR images, which consists of the Transformer Deformable Convolution Alignment Module (TDCAM) and the Dynamic Weight Fusion Block (DWFB). To solve the ghosting artifacts, the proposed TDCAM extracts long-distance content similar to the reference feature in the entire non-reference features, which can accurately remove misalignment and fill the content occluded by moving objects. For the purpose of eliminating fusion distortions, we propose DWFB to spatially adaptively select useful information across frames to effectively fuse multi-exposed features. Extensive experiments show that our method quantitatively and qualitatively achieves state-of-the-art performance.
Abstract:Visual obstacle discovery is a key step towards autonomous navigation of indoor mobile robots. Successful solutions have many applications in multiple scenes. One of the exceptions is the reflective ground. In this case, the reflections on the floor resemble the true world, which confuses the obstacle discovery and leaves navigation unsuccessful. We argue that the key to this problem lies in obtaining discriminative features for reflections and obstacles. Note that obstacle and reflection can be separated by the ground plane in 3D space. With this observation, we firstly introduce a pre-calibration based ground detection scheme that uses robot motion to predict the ground plane. Due to the immunity of robot motion to reflection, this scheme avoids failed ground detection caused by reflection. Given the detected ground, we design a ground-pixel parallax to describe the location of a pixel relative to the ground. Based on this, a unified appearance-geometry feature representation is proposed to describe objects inside rectangular boxes. Eventually, based on segmenting by detection framework, an appearance-geometry fusion regressor is designed to utilize the proposed feature to discover the obstacles. It also prevents our model from concentrating too much on parts of obstacles instead of whole obstacles. For evaluation, we introduce a new dataset for Obstacle on Reflective Ground (ORG), which comprises 15 scenes with various ground reflections, a total of more than 200 image sequences and 3400 RGB images. The pixel-wise annotations of ground and obstacle provide a comparison to our method and other methods. By reducing the misdetection of the reflection, the proposed approach outperforms others. The source code and the dataset will be available at https://github.com/XuefengBUPT/IndoorObstacleDiscovery-RG.
Abstract:The recently proposed open-world object and open-set detection achieve a breakthrough in finding never-seen-before objects and distinguishing them from class-known ones. However, their studies on knowledge transfer from known classes to unknown ones need to be deeper, leading to the scanty capability for detecting unknowns hidden in the background. In this paper, we propose the unknown sniffer (UnSniffer) to find both unknown and known objects. Firstly, the generalized object confidence (GOC) score is introduced, which only uses class-known samples for supervision and avoids improper suppression of unknowns in the background. Significantly, such confidence score learned from class-known objects can be generalized to unknown ones. Additionally, we propose a negative energy suppression loss to further limit the non-object samples in the background. Next, the best box of each unknown is hard to obtain during inference due to lacking their semantic information in training. To solve this issue, we introduce a graph-based determination scheme to replace hand-designed non-maximum suppression (NMS) post-processing. Finally, we present the Unknown Object Detection Benchmark, the first publicly benchmark that encompasses precision evaluation for unknown object detection to our knowledge. Experiments show that our method is far better than the existing state-of-the-art methods. Code is available at: https://github.com/Went-Liang/UnSniffer.
Abstract:Understanding semantic information is an essential step in knowing what is being learned in both full-reference (FR) and no-reference (NR) image quality assessment (IQA) methods. However, especially for many severely distorted images, even if there is an undistorted image as a reference (FR-IQA), it is difficult to perceive the lost semantic and texture information of distorted images directly. In this paper, we propose a Mask Reference IQA (MR-IQA) method that masks specific patches of a distorted image and supplements missing patches with the reference image patches. In this way, our model only needs to input the reconstructed image for quality assessment. First, we design a mask generator to select the best candidate patches from reference images and supplement the lost semantic information in distorted images, thus providing more reference for quality assessment; in addition, the different masked patches imply different data augmentations, which favors model training and reduces overfitting. Second, we provide a Mask Reference Network (MRNet): the dedicated modules can prevent disturbances due to masked patches and help eliminate the patch discontinuity in the reconstructed image. Our method achieves state-of-the-art performances on the benchmark KADID-10k, LIVE and CSIQ datasets and has better generalization performance across datasets. The code and results are available in the supplementary material.
Abstract:Line coverage is to cover linear infrastructure modeled as 1D segments by robots, which received attention in recent years. With the increasing urbanization, the area of the city and the density of infrastructure continues to increase, which brings two issues: (1) Due to the energy constraint, it is hard for the homogeneous robot team to cover the large-scale linear infrastructure starting from one depot; (2) In the large urban scene, the imbalance of robots' path greatly extends the time cost of the multi-robot system, which is more serious than that in smaller-size scenes. To address these issues, we propose a heterogeneous multi-robot approach consisting of several teams, each of which contains one transportation robot (TRob) and several coverage robots (CRobs). Firstly, a balanced graph partitioning (BGP) algorithm is proposed to divide the road network into several similar-size sub-graphs, and then the TRob delivers a group of CRobs to the subgraph region quickly. Secondly, a balanced ulusoy partitioning (BUP) algorithm is proposed to extract similar-length tours for each CRob from the sub-graph. Abundant experiments are conducted on seven road networks ranging in scales that are collected in this paper. Our method achieves robot utilization of 90% and the best maximal tour length at the cost of a small increase in total tour length, which further minimizes the time cost of the whole system. The source code and the road networks are available at https://github.com/suhangsong/BLC-LargeScale.
Abstract:For the 2D laser-based tasks, e.g., people detection and people tracking, leg detection is usually the first step. Thus, it carries great weight in determining the performance of people detection and people tracking. However, many leg detectors ignore the inevitable noise and the multiscale characteristics of the laser scan, which makes them sensitive to the unreliable features of point cloud and further degrades the performance of the leg detector. In this paper, we propose a multiscale adaptive-switch Random Forest (MARF) to overcome these two challenges. Firstly, the adaptive-switch decision tree is designed to use noisesensitive features to conduct weighted classification and noiseinvariant features to conduct binary classification, which makes our detector perform more robust to noise. Secondly, considering the multiscale property that the sparsity of the 2D point cloud is proportional to the length of laser beams, we design a multiscale random forest structure to detect legs at different distances. Moreover, the proposed approach allows us to discover a sparser human leg from point clouds than others. Consequently, our method shows an improved performance compared to other state-of-the-art leg detectors on the challenging Moving Legs dataset and retains the whole pipeline at a speed of 60+ FPS on lowcomputational laptops. Moreover, we further apply the proposed MARF to the people detection and tracking system, achieving a considerable gain in all metrics.
Abstract:The performance of monocular depth estimation generally depends on the amount of parameters and computational cost. It leads to a large accuracy contrast between light-weight networks and heavy-weight networks, which limits their application in the real world. In this paper, we model the majority of accuracy contrast between them as the difference of depth distribution, which we call "Distribution drift". To this end, a distribution alignment network (DANet) is proposed. We firstly design a pyramid scene transformer (PST) module to capture inter-region interaction in multiple scales. By perceiving the difference of depth features between every two regions, DANet tends to predict a reasonable scene structure, which fits the shape of distribution to ground truth. Then, we propose a local-global optimization (LGO) scheme to realize the supervision of global range of scene depth. Thanks to the alignment of depth distribution shape and scene depth range, DANet sharply alleviates the distribution drift, and achieves a comparable performance with prior heavy-weight methods, but uses only 1% floating-point operations per second (FLOPs) of them. The experiments on two datasets, namely the widely used NYUDv2 dataset and the more challenging iBims-1 dataset, demonstrate the effectiveness of our method. The source code is available at https://github.com/YiLiM1/DANet.