Abstract:Visual obstacle discovery is a key step towards autonomous navigation of indoor mobile robots. Successful solutions have many applications in multiple scenes. One of the exceptions is the reflective ground. In this case, the reflections on the floor resemble the true world, which confuses the obstacle discovery and leaves navigation unsuccessful. We argue that the key to this problem lies in obtaining discriminative features for reflections and obstacles. Note that obstacle and reflection can be separated by the ground plane in 3D space. With this observation, we firstly introduce a pre-calibration based ground detection scheme that uses robot motion to predict the ground plane. Due to the immunity of robot motion to reflection, this scheme avoids failed ground detection caused by reflection. Given the detected ground, we design a ground-pixel parallax to describe the location of a pixel relative to the ground. Based on this, a unified appearance-geometry feature representation is proposed to describe objects inside rectangular boxes. Eventually, based on segmenting by detection framework, an appearance-geometry fusion regressor is designed to utilize the proposed feature to discover the obstacles. It also prevents our model from concentrating too much on parts of obstacles instead of whole obstacles. For evaluation, we introduce a new dataset for Obstacle on Reflective Ground (ORG), which comprises 15 scenes with various ground reflections, a total of more than 200 image sequences and 3400 RGB images. The pixel-wise annotations of ground and obstacle provide a comparison to our method and other methods. By reducing the misdetection of the reflection, the proposed approach outperforms others. The source code and the dataset will be available at https://github.com/XuefengBUPT/IndoorObstacleDiscovery-RG.
Abstract:For the 2D laser-based tasks, e.g., people detection and people tracking, leg detection is usually the first step. Thus, it carries great weight in determining the performance of people detection and people tracking. However, many leg detectors ignore the inevitable noise and the multiscale characteristics of the laser scan, which makes them sensitive to the unreliable features of point cloud and further degrades the performance of the leg detector. In this paper, we propose a multiscale adaptive-switch Random Forest (MARF) to overcome these two challenges. Firstly, the adaptive-switch decision tree is designed to use noisesensitive features to conduct weighted classification and noiseinvariant features to conduct binary classification, which makes our detector perform more robust to noise. Secondly, considering the multiscale property that the sparsity of the 2D point cloud is proportional to the length of laser beams, we design a multiscale random forest structure to detect legs at different distances. Moreover, the proposed approach allows us to discover a sparser human leg from point clouds than others. Consequently, our method shows an improved performance compared to other state-of-the-art leg detectors on the challenging Moving Legs dataset and retains the whole pipeline at a speed of 60+ FPS on lowcomputational laptops. Moreover, we further apply the proposed MARF to the people detection and tracking system, achieving a considerable gain in all metrics.