Abstract:Recent interest in mobile manipulation has resulted in a wide range of new robot designs. A large family of these designs focuses on modular platforms that combine existing mobile bases with static manipulator arms. They combine these modules by mounting the arm in a tabletop configuration. However, the operating workspaces and heights for common mobile manipulation tasks, such as opening articulated objects, significantly differ from tabletop manipulation tasks. As a result, these standard arm mounting configurations can result in kinematics with restricted joint ranges and motions. To address these problems, we present the first Concurrent Design approach for mobile manipulators to optimize key arm-mounting parameters. Our approach directly targets task performance across representative household tasks by training a powerful multitask-capable reinforcement learning policy in an inner loop while optimizing over a distribution of design configurations guided by Bayesian Optimization and HyperBand (BOHB) in an outer loop. This results in novel designs that significantly improve performance across both seen and unseen test tasks, and outperform designs generated by heuristic-based performance indices that are cheaper to evaluate but only weakly correlated with the motions of interest. We evaluate the physical feasibility of the resulting designs and show that they are practical and remain modular, affordable, and compatible with existing commercial components. We open-source the approach and generated designs to facilitate further improvements of these platforms.
Abstract:Navigating outdoor environments with visual Simultaneous Localization and Mapping (SLAM) systems poses significant challenges due to dynamic scenes, lighting variations, and seasonal changes, requiring robust solutions. While traditional SLAM methods struggle with adaptability, deep learning-based approaches and emerging neural radiance fields as well as Gaussian Splatting-based SLAM methods, offer promising alternatives. However, these methods have primarily been evaluated in controlled indoor environments with stable conditions, leaving a gap in understanding their performance in unstructured and variable outdoor settings. This study addresses this gap by evaluating these methods in natural outdoor environments, focusing on camera tracking accuracy, robustness to environmental factors, and computational efficiency, highlighting distinct trade-offs. Extensive evaluations demonstrate that neural SLAM methods achieve superior robustness, particularly under challenging conditions such as low light, but at a high computational cost. At the same time, traditional methods perform the best across seasons but are highly sensitive to variations in lighting conditions. The code of the benchmark is publicly available at https://github.com/iis-esslingen/nerf-3dgs-benchmark.
Abstract:Robust Simultaneous Localization and Mapping (SLAM) is a crucial enabler for autonomous navigation in natural, unstructured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGB-D cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGB-D configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, natural environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.
Abstract:3D open-vocabulary scene graph methods are a promising map representation for embodied agents, however many current approaches are computationally expensive. In this paper, we reexamine the critical design choices established in previous works to optimize both efficiency and performance. We propose a general scene graph framework and conduct three studies that focus on image pre-processing, feature fusion, and feature selection. Our findings reveal that commonly used image pre-processing techniques provide minimal performance improvement while tripling computation (on a per object view basis). We also show that averaging feature labels across different views significantly degrades performance. We study alternative feature selection strategies that enhance performance without adding unnecessary computational costs. Based on our findings, we introduce a computationally balanced approach for 3D point cloud segmentation with per-object features. The approach matches state-of-the-art classification accuracy while achieving a threefold reduction in computation.
Abstract:Efficient learning from demonstration for long-horizon tasks remains an open challenge in robotics. While significant effort has been directed toward learning trajectories, a recent resurgence of object-centric approaches has demonstrated improved sample efficiency, enabling transferable robotic skills. Such approaches model tasks as a sequence of object poses over time. In this work, we propose a scheme for transferring observed object arrangements to novel object instances by learning these arrangements on canonical class frames. We then employ this scheme to enable a simple yet effective approach for training models from as few as five demonstrations to predict arrangements of a wide range of objects including tableware, cutlery, furniture, and desk spaces. We propose a method for optimizing the learned models to enables efficient learning of tasks such as setting a table or tidying up an office with intra-category transfer, even in the presence of distractors. We present extensive experimental results in simulation and on a real robotic system for table setting which, based on human evaluations, scored 73.3% compared to a human baseline. We make the code and trained models publicly available at http://oplict.cs.uni-freiburg.de.
Abstract:The increasing interest in autonomous driving systems has highlighted the need for an in-depth analysis of human driving behavior in diverse scenarios. Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices and ensure seamless integration into human-dominated environments. This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets, including Argoverse 2, nuPlan, Lyft, and DeepUrban. By defining and leveraging existing safety and behavior-related metrics, such as time to collision, adherence to speed limits, and interactions with other traffic participants, we aim to provide a comprehensive understanding of each datasets strengths and limitations. Our analysis focuses on the distribution of data samples, identifying noise, outliers, and undesirable behaviors exhibited by human drivers in both the training and validation sets. The results underscore the need for applying robust filtering techniques to certain datasets due to high levels of noise and the presence of such undesirable behaviors.
Abstract:Neural Fields have emerged as a transformative approach for 3D scene representation in computer vision and robotics, enabling accurate inference of geometry, 3D semantics, and dynamics from posed 2D data. Leveraging differentiable rendering, Neural Fields encompass both continuous implicit and explicit neural representations enabling high-fidelity 3D reconstruction, integration of multi-modal sensor data, and generation of novel viewpoints. This survey explores their applications in robotics, emphasizing their potential to enhance perception, planning, and control. Their compactness, memory efficiency, and differentiability, along with seamless integration with foundation and generative models, make them ideal for real-time applications, improving robot adaptability and decision-making. This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers. First, we present four key Neural Fields frameworks: Occupancy Networks, Signed Distance Fields, Neural Radiance Fields, and Gaussian Splatting. Second, we detail Neural Fields' applications in five major robotics domains: pose estimation, manipulation, navigation, physics, and autonomous driving, highlighting key works and discussing takeaways and open challenges. Finally, we outline the current limitations of Neural Fields in robotics and propose promising directions for future research. Project page: https://robonerf.github.io
Abstract:Multi-sensor fusion is crucial for accurate 3D object detection in autonomous driving, with cameras and LiDAR being the most commonly used sensors. However, existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV), thus sacrificing complementary information such as height or geometric proportions. To address this limitation, we propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels. Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection. Additionally, we introduce a self-supervised mask modeling pre-training strategy to improve multi-modal representation learning and data efficiency through three novel objectives. Extensive experiments on nuScenes and Argoverse2 datasets conclusively demonstrate the efficacy of ProFusion3D. Moreover, ProFusion3D is robust to sensor failure, demonstrating strong performance when only one modality is available.
Abstract:Forecasting the semantics and 3D structure of scenes is essential for robots to navigate and plan actions safely. Recent methods have explored semantic and panoptic scene forecasting; however, they do not consider the geometry of the scene. In this work, we propose the panoptic-depth forecasting task for jointly predicting the panoptic segmentation and depth maps of unobserved future frames, from monocular camera images. To facilitate this work, we extend the popular KITTI-360 and Cityscapes benchmarks by computing depth maps from LiDAR point clouds and leveraging sequential labeled data. We also introduce a suitable evaluation metric that quantifies both the panoptic quality and depth estimation accuracy of forecasts in a coherent manner. Furthermore, we present two baselines and propose the novel PDcast architecture that learns rich spatio-temporal representations by incorporating a transformer-based encoder, a forecasting module, and task-specific decoders to predict future panoptic-depth outputs. Extensive evaluations demonstrate the effectiveness of PDcast across two datasets and three forecasting tasks, consistently addressing the primary challenges. We make the code publicly available at https://pdcast.cs.uni-freiburg.de.
Abstract:Forecasting the future trajectories of surrounding agents is crucial for autonomous vehicles to ensure safe, efficient, and comfortable route planning. While model ensembling has improved prediction accuracy in various fields, its application in trajectory prediction is limited due to the multi-modal nature of predictions. In this paper, we propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models. We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models. To address this problem, we introduce a new method that generates optimal trajectories from a set of neural networks, framing it as a risk minimization problem with a variable loss function. By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling. Extensive experiments on the nuScenes prediction dataset demonstrate that our method surpasses current state-of-the-art techniques, achieving top ranks on the leaderboard. We also provide a comprehensive empirical study on ensembling strategies, offering insights into their effectiveness. Our findings highlight the potential of advanced ensembling techniques in trajectory prediction, significantly improving predictive performance and paving the way for more reliable predicted trajectories.