Apr 08, 2025
Abstract:The increasing population, thus financial interests, in coastal areas have increased the need to monitor coastal elevation and shoreline change. Though several resources exist to obtain this information, they often lack the required temporal resolution for short-term monitoring (e.g., every hour). To address this issue, this study implements a low-cost ZED 2i stereo camera system and close-range photogrammetry to collect images for generating 3D point clouds, digital surface models (DSMs) of beach elevation, and georectified imagery at a localized scale and high temporal resolution. The main contributions of this study are (i) intrinsic camera calibration, (ii) georectification and registration of acquired imagery and point cloud, (iii) generation of the DSM of the beach elevation, and (iv) a comparison of derived products against those from uncrewed aircraft system structure-from-motion photogrammetry. Preliminary results show that despite its limitations, the ZED 2i can provide the desired mapping products at localized and high temporal scales. The system achieved a mean reprojection error of 0.20 px, a point cloud registration of 27 cm, a vertical error of 37.56 cm relative to ground truth, and georectification root mean square errors of 2.67 cm and 2.81 cm for x and y.
* IGARSS 2023 - 2023 IEEE International Geoscience and Remote
Sensing Symposium
* Published in IGARSS 2023 - 2023 IEEE International Geoscience and
Remote Sensing Symposium
Via
