Abstract:Constructing precise 3D maps is crucial for the development of future map-based systems such as self-driving and navigation. However, generating these maps in complex environments, such as multi-level parking garages or shopping malls, remains a formidable challenge. In this paper, we introduce a participatory sensing approach that delegates map-building tasks to map users, thereby enabling cost-effective and continuous data collection. The proposed method harnesses the collective efforts of users, facilitating the expansion and ongoing update of the maps as the environment evolves. We realized this approach by developing Map++, an efficient system that functions as a plug-and-play extension, supporting participatory map-building based on existing SLAM algorithms. Map++ addresses a plethora of scalability issues in this participatory map-building system by proposing a set of lightweight, application-layer protocols. We evaluated Map++ in four representative settings: an indoor garage, an outdoor plaza, a public SLAM benchmark, and a simulated environment. The results demonstrate that Map++ can reduce traffic volume by approximately 46% with negligible degradation in mapping accuracy, i.e., less than 0.03m compared to the baseline system. It can support approximately $2 \times$ as many concurrent users as the baseline under the same network bandwidth. Additionally, for users who travel on already-mapped trajectories, they can directly utilize the existing maps for localization and save 47% of the CPU usage.
Abstract:SLAM is a fundamental capability of unmanned systems, with LiDAR-based SLAM gaining widespread adoption due to its high precision. Current SLAM systems can achieve centimeter-level accuracy within a short period. However, there are still several challenges when dealing with largescale mapping tasks including significant storage requirements and difficulty of reusing the constructed maps. To address this, we first design an elastic and lightweight map representation called CELLmap, composed of several CELLs, each representing the local map at the corresponding location. Then, we design a general backend including CELL-based bidirectional registration module and loop closure detection module to improve global map consistency. Our experiments have demonstrated that CELLmap can represent the precise geometric structure of large-scale maps of KITTI dataset using only about 60 MB. Additionally, our general backend achieves up to a 26.88% improvement over various LiDAR odometry methods.
Abstract:Autonomous systems often employ multiple LiDARs to leverage the integrated advantages, enhancing perception and robustness. The most critical prerequisite under this setting is the estimating the extrinsic between each LiDAR, i.e., calibration. Despite the exciting progress in multi-LiDAR calibration efforts, a universal, sensor-agnostic calibration method remains elusive. According to the coarse-to-fine framework, we first design a spherical descriptor TERRA for 3-DoF rotation initialization with no prior knowledge. To further optimize, we present JEEP for the joint estimation of extrinsic and pose, integrating geometric and motion information to overcome factors affecting the point cloud registration. Finally, the LiDAR poses optimized by the hierarchical optimization module are input to time synchronization module to produce the ultimate calibration results, including the time offset. To verify the effectiveness, we conduct extensive experiments on eight datasets, where 16 diverse types of LiDARs in total and dozens of calibration tasks are tested. In the challenging tasks, the calibration errors can still be controlled within 5cm and 1{\deg} with a high success rate.
Abstract:Localization and mapping are critical tasks for various applications such as autonomous vehicles and robotics. The challenges posed by outdoor environments present particular complexities due to their unbounded characteristics. In this work, we present MM-Gaussian, a LiDAR-camera multi-modal fusion system for localization and mapping in unbounded scenes. Our approach is inspired by the recently developed 3D Gaussians, which demonstrate remarkable capabilities in achieving high rendering quality and fast rendering speed. Specifically, our system fully utilizes the geometric structure information provided by solid-state LiDAR to address the problem of inaccurate depth encountered when relying solely on visual solutions in unbounded, outdoor scenarios. Additionally, we utilize 3D Gaussian point clouds, with the assistance of pixel-level gradient descent, to fully exploit the color information in photos, thereby achieving realistic rendering effects. To further bolster the robustness of our system, we designed a relocalization module, which assists in returning to the correct trajectory in the event of a localization failure. Experiments conducted in multiple scenarios demonstrate the effectiveness of our method.
Abstract:Visual Odometry (VO) plays a pivotal role in autonomous systems, with a principal challenge being the lack of depth information in camera images. This paper introduces OCC-VO, a novel framework that capitalizes on recent advances in deep learning to transform 2D camera images into 3D semantic occupancy, thereby circumventing the traditional need for concurrent estimation of ego poses and landmark locations. Within this framework, we utilize the TPV-Former to convert surround view cameras' images into 3D semantic occupancy. Addressing the challenges presented by this transformation, we have specifically tailored a pose estimation and mapping algorithm that incorporates Semantic Label Filter, Dynamic Object Filter, and finally, utilizes Voxel PFilter for maintaining a consistent global semantic map. Evaluations on the Occ3D-nuScenes not only showcase a 20.6% improvement in Success Ratio and a 29.6% enhancement in trajectory accuracy against ORB-SLAM3, but also emphasize our ability to construct a comprehensive map. Our implementation is open-sourced and available at: https://github.com/USTCLH/OCC-VO.
Abstract:This paper summarizes the music demixing (MDX) track of the Sound Demixing Challenge (SDX'23). We provide a summary of the challenge setup and introduce the task of robust music source separation (MSS), i.e., training MSS models in the presence of errors in the training data. We propose a formalization of the errors that can occur in the design of a training dataset for MSS systems and introduce two new datasets that simulate such errors: SDXDB23_LabelNoise and SDXDB23_Bleeding1. We describe the methods that achieved the highest scores in the competition. Moreover, we present a direct comparison with the previous edition of the challenge (the Music Demixing Challenge 2021): the best performing system under the standard MSS formulation achieved an improvement of over 1.6dB in signal-to-distortion ratio over the winner of the previous competition, when evaluated on MDXDB21. Besides relying on the signal-to-distortion ratio as objective metric, we also performed a listening test with renowned producers/musicians to study the perceptual quality of the systems and report here the results. Finally, we provide our insights into the organization of the competition and our prospects for future editions.
Abstract:In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent years, numerous public datasets have played significant roles in the advancement of autonomous cars and unmanned aerial vehicles (UAVs). However, these two platforms differ from aerial work robots: UAVs are limited in their payload capacity, while cars are restricted to two-dimensional movements. To fill this gap, we create the Giraffe mapping robot based on a bucket truck, which is equipped with a variety of well-calibrated and synchronized sensors: four 3D LiDARs, two stereo cameras, two monocular cameras, Inertial Measurement Units (IMUs), and a GNSS/INS system. A laser tracker is used to record the millimeter-level ground truth positions. We also make its ground twin, the Okapi mapping robot, to gather data for comparison. The proposed dataset extends the typical autonomous driving sensing suite to aerial scenes. Therefore, the dataset is named FLICAR to denote flying cars. We believe this dataset can also represent the flying car scenarios, specifically the takeoff and landing of VTOL (Vertical Takeoff and Landing) flying cars. The dataset is available for download at: https://ustc-flicar.github.io.
Abstract:In this work, we present a symbolic symphony music generation solution, SymphonyNet, based on a permutation invariant language model. To bridge the gap between text generation and symphony generation task, we propose a novel Multi-track Multi-instrument Repeatable (MMR) representation with particular 3-D positional embedding and a modified Byte Pair Encoding algorithm (Music BPE) for music tokens. A novel linear transformer decoder architecture is introduced as a backbone for modeling extra-long sequences of symphony tokens. Meanwhile, we train the decoder to learn automatic orchestration as a joint task by masking instrument information from the input. We also introduce a large-scale symbolic symphony dataset for the advance of symphony generation research. Our empirical results show that our proposed approach can generate coherent, novel, complex and harmonious symphony compared to human composition, which is the pioneer solution for multi-track multi-instrument symbolic music generation.
Abstract:To enlarge the perception range and reliability of individual autonomous vehicles, cooperative perception has been received much attention. However, considering the high volume of shared messages, limited bandwidth and computation resources in vehicular networks become bottlenecks. In this paper, we investigate how to balance the volume of shared messages and constrained resources in fog-based vehicular networks. To this end, we first characterize sum satisfaction of cooperative perception taking account of its spatial-temporal value and latency performance. Next, the sensing block message, communication resource block, and computation resource are jointly allocated to maximize the sum satisfaction of cooperative perception, while satisfying the maximum latency and sojourn time constraints of vehicles. Owing to its non-convexity, we decouple the original problem into two separate sub-problems and devise corresponding solutions. Simulation results demonstrate that our proposed scheme can effectively boost the sum satisfaction of cooperative perception compared with existing baselines.
Abstract:Background: Electronic Health Records (EHRs) contain rich information of patients' health history, which usually include both structured and unstructured data. There have been many studies focusing on distilling valuable information from structured data, such as disease codes, laboratory test results, and treatments. However, relying on structured data only might be insufficient in reflecting patients' comprehensive information and such data may occasionally contain erroneous records. Objective: With the recent advances of machine learning (ML) and deep learning (DL) techniques, an increasing number of studies seek to obtain more accurate results by incorporating unstructured free-text data as well. This paper reviews studies that use multimodal data, i.e. a combination of structured and unstructured data, from EHRs as input for conventional ML or DL models to address the targeted tasks. Materials and Methods: We searched in the Institute of Electrical and Electronics Engineers (IEEE) Digital Library, PubMed, and Association for Computing Machinery (ACM) Digital Library for articles related to ML-based multimodal EHR studies. Results and Discussion: With the final 94 included studies, we focus on how data from different modalities were combined and interacted using conventional ML and DL techniques, and how these algorithms were applied in EHR-related tasks. Further, we investigate the advantages and limitations of these fusion methods and indicate future directions for ML-based multimodal EHR research.