Topic:Fine Grained Image Classification
What is Fine Grained Image Classification? Fine grained image classification is a task in computer vision where the goal is to classify images into subcategories within a larger category. For example, classifying different species of birds or different types of flowers. This task is considered to be fine grained because it requires the model to distinguish between subtle differences in visual appearance and patterns, making it more challenging than regular image classification tasks.
Papers and Code
Apr 30, 2025
Abstract:Given the severe challenges confronting the global growth security of economic crops, precise identification and prevention of plant diseases has emerged as a critical issue in artificial intelligence-enabled agricultural technology. To address the technical challenges in plant disease recognition, including small-sample learning, leaf occlusion, illumination variations, and high inter-class similarity, this study innovatively proposes a Dynamic Dual-Stream Fusion Network (DS_FusionNet). The network integrates a dual-backbone architecture, deformable dynamic fusion modules, and bidirectional knowledge distillation strategy, significantly enhancing recognition accuracy. Experimental results demonstrate that DS_FusionNet achieves classification accuracies exceeding 90% using only 10% of the PlantDisease and CIFAR-10 datasets, while maintaining 85% accuracy on the complex PlantWild dataset, exhibiting exceptional generalization capabilities. This research not only provides novel technical insights for fine-grained image classification but also establishes a robust foundation for precise identification and management of agricultural diseases.
* 9 pages, 14 figures, 2025 3rd International Conference on Algorithms,
Mathematical Modeling and Machinery Processing (AMMMP 2025)
Via

Apr 30, 2025
Abstract:Diabetic retinopathy is a severe eye condition caused by diabetes where the retinal blood vessels get damaged and can lead to vision loss and blindness if not treated. Early and accurate detection is key to intervention and stopping the disease progressing. For addressing this disease properly, this paper presents a comprehensive approach for automated diabetic retinopathy detection by proposing a new hybrid deep learning model called VR-FuseNet. Diabetic retinopathy is a major eye disease and leading cause of blindness especially among diabetic patients so accurate and efficient automated detection methods are required. To address the limitations of existing methods including dataset imbalance, diversity and generalization issues this paper presents a hybrid dataset created from five publicly available diabetic retinopathy datasets. Essential preprocessing techniques such as SMOTE for class balancing and CLAHE for image enhancement are applied systematically to the dataset to improve the robustness and generalizability of the dataset. The proposed VR-FuseNet model combines the strengths of two state-of-the-art convolutional neural networks, VGG19 which captures fine-grained spatial features and ResNet50V2 which is known for its deep hierarchical feature extraction. This fusion improves the diagnostic performance and achieves an accuracy of 91.824%. The model outperforms individual architectures on all performance metrics demonstrating the effectiveness of hybrid feature extraction in Diabetic Retinopathy classification tasks. To make the proposed model more clinically useful and interpretable this paper incorporates multiple XAI techniques. These techniques generate visual explanations that clearly indicate the retinal features affecting the model's prediction such as microaneurysms, hemorrhages and exudates so that clinicians can interpret and validate.
* 33 pages, 49 figures
Via

Apr 29, 2025
Abstract:Fine-grained visual classification aims to recognize objects belonging to multiple subordinate categories within a super-category. However, this remains a challenging problem, as appearance information alone is often insufficient to accurately differentiate between fine-grained visual categories. To address this, we propose a novel and unified framework that leverages meta-information to assist fine-grained identification. We tackle the joint learning of visual and meta-information through cross-contrastive pre-training. In the first stage, we employ three encoders for images, text, and meta-information, aligning their projected embeddings to achieve better representations. We then fine-tune the image and meta-information encoders for the classification task. Experiments on the NABirds dataset demonstrate that our framework effectively utilizes meta-information to enhance fine-grained recognition performance. With the addition of meta-information, our framework surpasses the current baseline on NABirds by 7.83%. Furthermore, it achieves an accuracy of 84.44% on the NABirds dataset, outperforming many existing state-of-the-art approaches that utilize meta-information.
* 9 pages, 4 figures. Submitted to arXiv
Via

Apr 28, 2025
Abstract:By mapping sites at large scales using remotely sensed data, archaeologists can generate unique insights into long-term demographic trends, inter-regional social networks, and past adaptations to climate change. Remote sensing surveys complement field-based approaches, and their reach can be especially great when combined with deep learning and computer vision techniques. However, conventional supervised deep learning methods face challenges in annotating fine-grained archaeological features at scale. While recent vision foundation models have shown remarkable success in learning large-scale remote sensing data with minimal annotations, most off-the-shelf solutions are designed for RGB images rather than multi-spectral satellite imagery, such as the 8-band data used in our study. In this paper, we introduce DeepAndes, a transformer-based vision foundation model trained on three million multi-spectral satellite images, specifically tailored for Andean archaeology. DeepAndes incorporates a customized DINOv2 self-supervised learning algorithm optimized for 8-band multi-spectral imagery, marking the first foundation model designed explicitly for the Andes region. We evaluate its image understanding performance through imbalanced image classification, image instance retrieval, and pixel-level semantic segmentation tasks. Our experiments show that DeepAndes achieves superior F1 scores, mean average precision, and Dice scores in few-shot learning scenarios, significantly outperforming models trained from scratch or pre-trained on smaller datasets. This underscores the effectiveness of large-scale self-supervised pre-training in archaeological remote sensing. Codes will be available on https://github.com/geopacha/DeepAndes.
Via

Apr 28, 2025
Abstract:The customizability of RISC-V makes it an attractive choice for accelerating deep neural networks (DNNs). It can be achieved through instruction set extensions and corresponding custom functional units. Yet, efficiently exploiting these opportunities requires a hardware/software co-design approach in which the DNN model, software, and hardware are designed together. In this paper, we propose novel RISC-V extensions for accelerating DNN models containing semi-structured and unstructured sparsity. While the idea of accelerating structured and unstructured pruning is not new, our novel design offers various advantages over other designs. To exploit semi-structured sparsity, we take advantage of the fine-grained (bit-level) configurability of FPGAs and suggest reserving a few bits in a block of DNN weights to encode the information about sparsity in the succeeding blocks. The proposed custom functional unit utilizes this information to skip computations. To exploit unstructured sparsity, we propose a variable cycle sequential multiply-and-accumulate unit that performs only as many multiplications as the non-zero weights. Our implementation of unstructured and semi-structured pruning accelerators can provide speedups of up to a factor of 3 and 4, respectively. We then propose a combined design that can accelerate both types of sparsities, providing speedups of up to a factor of 5. Our designs consume a small amount of additional FPGA resources such that the resulting co-designs enable the acceleration of DNNs even on small FPGAs. We benchmark our designs on standard TinyML applications such as keyword spotting, image classification, and person detection.
Via

Apr 28, 2025
Abstract:Purpose: The scarcity of high-quality curated labeled medical training data remains one of the major limitations in applying artificial intelligence (AI) systems to breast cancer diagnosis. Deep models for mammogram analysis and mass (or micro-calcification) detection require training with a large volume of labeled images, which are often expensive and time-consuming to collect. To reduce this challenge, we proposed a novel method that leverages self-supervised learning (SSL) and a deep hybrid model, named \textbf{HybMNet}, which combines local self-attention and fine-grained feature extraction to enhance breast cancer detection on screening mammograms. Approach: Our method employs a two-stage learning process: (1) SSL Pretraining: We utilize EsViT, a SSL technique, to pretrain a Swin Transformer (Swin-T) using a limited set of mammograms. The pretrained Swin-T then serves as the backbone for the downstream task. (2) Downstream Training: The proposed HybMNet combines the Swin-T backbone with a CNN-based network and a novel fusion strategy. The Swin-T employs local self-attention to identify informative patch regions from the high-resolution mammogram, while the CNN-based network extracts fine-grained local features from the selected patches. A fusion module then integrates global and local information from both networks to generate robust predictions. The HybMNet is trained end-to-end, with the loss function combining the outputs of the Swin-T and CNN modules to optimize feature extraction and classification performance. Results: The proposed method was evaluated for its ability to detect breast cancer by distinguishing between benign (normal) and malignant mammograms. Leveraging SSL pretraining and the HybMNet model, it achieved AUC of 0.864 (95% CI: 0.852, 0.875) on the CMMD dataset and 0.889 (95% CI: 0.875, 0.903) on the INbreast dataset, highlighting its effectiveness.
Via

Apr 22, 2025
Abstract:Foundation models, trained on vast amounts of data using self-supervised techniques, have emerged as a promising frontier for advancing artificial intelligence (AI) applications in medicine. This study evaluates three different vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks. The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs. Self-supervised RAD-DINO consistently excelled in segmentation tasks, while text-supervised CheXagent demonstrated superior classification performance. BiomedCLIP showed inconsistent performance across tasks. A custom segmentation model that integrates global and local features substantially improved performance for all foundation models, particularly for challenging pneumothorax segmentation. The findings highlight that pre-training methodology significantly influences model performance on specific downstream tasks. For fine-grained segmentation tasks, models trained without text supervision performed better, while text-supervised models offered advantages in classification and interpretability. These insights provide guidance for selecting foundation models based on specific clinical applications in radiology.
Via

Apr 19, 2025
Abstract:In-context learning (ICL) enables Large Vision-Language Models (LVLMs) to adapt to new tasks without parameter updates, using a few demonstrations from a large support set. However, selecting informative demonstrations leads to high computational and memory costs. While some methods explore selecting a small and representative coreset in the text classification, evaluating all support set samples remains costly, and discarded samples lead to unnecessary information loss. These methods may also be less effective for image classification due to differences in feature spaces. Given these limitations, we propose Key-based Coreset Optimization (KeCO), a novel framework that leverages untapped data to construct a compact and informative coreset. We introduce visual features as keys within the coreset, which serve as the anchor for identifying samples to be updated through different selection strategies. By leveraging untapped samples from the support set, we update the keys of selected coreset samples, enabling the randomly initialized coreset to evolve into a more informative coreset under low computational cost. Through extensive experiments on coarse-grained and fine-grained image classification benchmarks, we demonstrate that KeCO effectively enhances ICL performance for image classification task, achieving an average improvement of more than 20\%. Notably, we evaluate KeCO under a simulated online scenario, and the strong performance in this scenario highlights the practical value of our framework for resource-constrained real-world scenarios.
* 11 pages, 5 figures
Via

Apr 22, 2025
Abstract:Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera
* Accepted by TAFFC 2025
Via

Apr 20, 2025
Abstract:Diabetic retinopathy (DR) is a leading cause of blindness worldwide, underscoring the importance of early detection for effective treatment. However, automated DR classification remains challenging due to variations in image quality, class imbalance, and pixel-level similarities that hinder model training. To address these issues, we propose a robust preprocessing pipeline incorporating image cropping, Contrast-Limited Adaptive Histogram Equalization (CLAHE), and targeted data augmentation to improve model generalization and resilience. Our approach leverages the Swin Transformer, which utilizes hierarchical token processing and shifted window attention to efficiently capture fine-grained features while maintaining linear computational complexity. We validate our method on the Aptos and IDRiD datasets for multi-class DR classification, achieving accuracy rates of 89.65% and 97.40%, respectively. These results demonstrate the effectiveness of our model, particularly in detecting early-stage DR, highlighting its potential for improving automated retinal screening in clinical settings.
Via
