Abstract:The Bangla linguistic variety is a fascinating mix of regional dialects that adds to the cultural diversity of the Bangla-speaking community. Despite extensive study into translating Bangla to English, English to Bangla, and Banglish to Bangla in the past, there has been a noticeable gap in translating Bangla regional dialects into standard Bangla. In this study, we set out to fill this gap by creating a collection of 32,500 sentences, encompassing Bangla, Banglish, and English, representing five regional Bangla dialects. Our aim is to translate these regional dialects into standard Bangla and detect regions accurately. To achieve this, we proposed models known as mT5 and BanglaT5 for translating regional dialects into standard Bangla. Additionally, we employed mBERT and Bangla-bert-base to determine the specific regions from where these dialects originated. Our experimental results showed the highest BLEU score of 69.06 for Mymensingh regional dialects and the lowest BLEU score of 36.75 for Chittagong regional dialects. We also observed the lowest average word error rate of 0.1548 for Mymensingh regional dialects and the highest of 0.3385 for Chittagong regional dialects. For region detection, we achieved an accuracy of 85.86% for Bangla-bert-base and 84.36% for mBERT. This is the first large-scale investigation of Bangla regional dialects to Bangla machine translation. We believe our findings will not only pave the way for future work on Bangla regional dialects to Bangla machine translation, but will also be useful in solving similar language-related challenges in low-resource language conditions.
Abstract:Dozens of new tools and technologies are being incorporated to help developers, which is becoming a source of consternation as they struggle to choose one over the others. For example, there are at least ten frameworks available to developers for developing web applications, posing a conundrum in selecting the best one that meets their needs. As a result, developers are continuously searching for all of the benefits and drawbacks of each API, framework, tool, and so on. One of the typical approaches is to examine all of the features through official documentation and discussion. This approach is time-consuming, often makes it difficult to determine which aspects are the most important to a particular developer and whether a particular aspect is important to the community at large. In this paper, we have used a benchmark API aspects dataset (Opiner) collected from StackOverflow posts and observed how Transformer models (BERT, RoBERTa, DistilBERT, and XLNet) perform in detecting software aspects in textual developer discussion with respect to the baseline Support Vector Machine (SVM) model. Through extensive experimentation, we have found that transformer models improve the performance of baseline SVM for most of the aspects, i.e., `Performance', `Security', `Usability', `Documentation', `Bug', `Legal', `OnlySentiment', and `Others'. However, the models fail to apprehend some of the aspects (e.g., `Community' and `Potability') and their performance varies depending on the aspects. Also, larger architectures like XLNet are ineffective in interpreting software aspects compared to smaller architectures like DistilBERT.
Abstract:Numerous meta-heuristic algorithms have been influenced by nature. Over the past couple of decades, their quantity has been significantly escalating. The majority of these algorithms attempt to emulate natural biological and physical phenomena. This research concentrates on the Flower Pollination algorithm, which is one of several bio-inspired algorithms. The original approach was suggested for pollen grain exploration and exploitation in confined space using a specific global pollination and local pollination strategy. As a "swarm intelligence" meta-heuristic algorithm, its strength lies in locating the vicinity of the optimum solution rather than identifying the minimum. A modification to the original method is detailed in this work. This research found that by changing the specific value of "switch probability" with dynamic values of different dimension sizes and functions, the outcome was mainly improved over the original flower pollination method.
Abstract:In modern capital market the price of a stock is often considered to be highly volatile and unpredictable because of various social, financial, political and other dynamic factors. With calculated and thoughtful investment, stock market can ensure a handsome profit with minimal capital investment, while incorrect prediction can easily bring catastrophic financial loss to the investors. This paper introduces the application of a recently introduced machine learning model - the Transformer model, to predict the future price of stocks of Dhaka Stock Exchange (DSE), the leading stock exchange in Bangladesh. The transformer model has been widely leveraged for natural language processing and computer vision tasks, but, to the best of our knowledge, has never been used for stock price prediction task at DSE. Recently the introduction of time2vec encoding to represent the time series features has made it possible to employ the transformer model for the stock price prediction. This paper concentrates on the application of transformer-based model to predict the price movement of eight specific stocks listed in DSE based on their historical daily and weekly data. Our experiments demonstrate promising results and acceptable root mean squared error on most of the stocks.