Abstract:This paper introduces a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using word2vec. We leverage wideResNet50 and word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.
Abstract:This paper presents a three-tier modality alignment approach to learning text-image joint embedding, coined as JEMA, for cross-modal retrieval of cooking recipes and food images. The first tier improves recipe text embedding by optimizing the LSTM networks with term extraction and ranking enhanced sequence patterns, and optimizes the image embedding by combining the ResNeXt-101 image encoder with the category embedding using wideResNet-50 with word2vec. The second tier modality alignment optimizes the textual-visual joint embedding loss function using a double batch-hard triplet loss with soft-margin optimization. The third modality alignment incorporates two types of cross-modality alignments as the auxiliary loss regularizations to further reduce the alignment errors in the joint learning of the two modality-specific embedding functions. The category-based cross-modal alignment aims to align the image category with the recipe category as a loss regularization to the joint embedding. The cross-modal discriminator-based alignment aims to add the visual-textual embedding distribution alignment to further regularize the joint embedding loss. Extensive experiments with the one-million recipes benchmark dataset Recipe1M demonstrate that the proposed JEMA approach outperforms the state-of-the-art cross-modal embedding methods for both image-to-recipe and recipe-to-image retrievals.
Abstract:This paper introduces a two-phase deep feature calibration framework for efficient learning of semantics enhanced text-image cross-modal joint embedding, which clearly separates the deep feature calibration in data preprocessing from training the joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature calibration by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, NLP methods to produce ranking scores for key terms before generating the key term feature. We leverage wideResNet50 to extract and encode the image category semantics to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature calibration by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, also utilizing the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with the deep feature calibration significantly outperforms the state-of-the-art approaches.
Abstract:It is widely acknowledged that learning joint embeddings of recipes with images is challenging due to the diverse composition and deformation of ingredients in cooking procedures. We present a Multi-modal Semantics enhanced Joint Embedding approach (MSJE) for learning a common feature space between the two modalities (text and image), with the ultimate goal of providing high-performance cross-modal retrieval services. Our MSJE approach has three unique features. First, we extract the TFIDF feature from the title, ingredients and cooking instructions of recipes. By determining the significance of word sequences through combining LSTM learned features with their TFIDF features, we encode a recipe into a TFIDF weighted vector for capturing significant key terms and how such key terms are used in the corresponding cooking instructions. Second, we combine the recipe TFIDF feature with the recipe sequence feature extracted through two-stage LSTM networks, which is effective in capturing the unique relationship between a recipe and its associated image(s). Third, we further incorporate TFIDF enhanced category semantics to improve the mapping of image modality and to regulate the similarity loss function during the iterative learning of cross-modal joint embedding. Experiments on the benchmark dataset Recipe1M show the proposed approach outperforms the state-of-the-art approaches.
Abstract:Ensemble learning is gaining renewed interests in recent years. This paper presents EnsembleBench, a holistic framework for evaluating and recommending high diversity and high accuracy ensembles. The design of EnsembleBench offers three novel features: (1) EnsembleBench introduces a set of quantitative metrics for assessing the quality of ensembles and for comparing alternative ensembles constructed for the same learning tasks. (2) EnsembleBench implements a suite of baseline diversity metrics and optimized diversity metrics for identifying and selecting ensembles with high diversity and high quality, making it an effective framework for benchmarking, evaluating and recommending high diversity model ensembles. (3) Four representative ensemble consensus methods are provided in the first release of EnsembleBench, enabling empirical study on the impact of consensus methods on ensemble accuracy. A comprehensive experimental evaluation on popular benchmark datasets demonstrates the utility and effectiveness of EnsembleBench for promoting high diversity ensembles and boosting the overall performance of selected ensembles.
Abstract:Image-to-video person re-identification identifies a target person by a probe image from quantities of pedestrian videos captured by non-overlapping cameras. Despite the great progress achieved,it's still challenging to match in the multimodal scenario,i.e. between image and video. Currently,state-of-the-art approaches mainly focus on the task-specific data,neglecting the extra information on the different but related tasks. In this paper,we propose an end-to-end neural network framework for image-to-video person reidentification by leveraging cross-modal embeddings learned from extra information.Concretely speaking,cross-modal embeddings from image captioning and video captioning models are reused to help learned features be projected into a coordinated space,where similarity can be directly computed. Besides,training steps from fixed model reuse approach are integrated into our framework,which can incorporate beneficial information and eventually make the target networks independent of existing models. Apart from that,our proposed framework resorts to CNNs and LSTMs for extracting visual and spatiotemporal features,and combines the strengths of identification and verification model to improve the discriminative ability of the learned feature. The experimental results demonstrate the effectiveness of our framework on narrowing down the gap between heterogeneous data and obtaining observable improvement in image-to-video person re-identification.