Abstract:We propose a novel framework, Stable Diffusion-based Momentum Integrated Adversarial Examples (SD-MIAE), for generating adversarial examples that can effectively mislead neural network classifiers while maintaining visual imperceptibility and preserving the semantic similarity to the original class label. Our method leverages the text-to-image generation capabilities of the Stable Diffusion model by manipulating token embeddings corresponding to the specified class in its latent space. These token embeddings guide the generation of adversarial images that maintain high visual fidelity. The SD-MIAE framework consists of two phases: (1) an initial adversarial optimization phase that modifies token embeddings to produce misclassified yet natural-looking images and (2) a momentum-based optimization phase that refines the adversarial perturbations. By introducing momentum, our approach stabilizes the optimization of perturbations across iterations, enhancing both the misclassification rate and visual fidelity of the generated adversarial examples. Experimental results demonstrate that SD-MIAE achieves a high misclassification rate of 79%, improving by 35% over the state-of-the-art method while preserving the imperceptibility of adversarial perturbations and the semantic similarity to the original class label, making it a practical method for robust adversarial evaluation.
Abstract:Recent advances in Text-to-Speech (TTS) and Voice-Conversion (VC) using generative Artificial Intelligence (AI) technology have made it possible to generate high-quality and realistic human-like audio. This introduces significant challenges to distinguishing AI-synthesized speech from the authentic human voice and could raise potential issues of misuse for malicious purposes such as impersonation and fraud, spreading misinformation, deepfakes, and scams. However, existing detection techniques for AI-synthesized audio have not kept pace and often exhibit poor generalization across diverse datasets. In this paper, we introduce SONAR, a synthetic AI-Audio Detection Framework and Benchmark, aiming to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content. SONAR includes a novel evaluation dataset sourced from 9 diverse audio synthesis platforms, including leading TTS providers and state-of-the-art TTS models. It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based deepfake detection systems. Through extensive experiments, we reveal the generalization limitations of existing detection methods and demonstrate that foundation models exhibit stronger generalization capabilities, which can be attributed to their model size and the scale and quality of pretraining data. Additionally, we explore the effectiveness and efficiency of few-shot fine-tuning in improving generalization, highlighting its potential for tailored applications, such as personalized detection systems for specific entities or individuals. Code and dataset are available at https://github.com/Jessegator/SONAR.
Abstract:Emerging Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact. However, recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems. In this paper, we review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI through robustness guarantee, privacy protection, and fairness awareness in distributed learning. We first provide a brief overview of alternative architectures for distributed learning, discuss inherent vulnerabilities for security, privacy, and fairness of AI algorithms in distributed learning, and analyze why these problems are present in distributed learning regardless of specific architectures. Then we provide a unique taxonomy of countermeasures for trustworthy distributed AI, covering (1) robustness to evasion attacks and irregular queries at inference, and robustness to poisoning attacks, Byzantine attacks, and irregular data distribution during training; (2) privacy protection during distributed learning and model inference at deployment; and (3) AI fairness and governance with respect to both data and models. We conclude with a discussion on open challenges and future research directions toward trustworthy distributed AI, such as the need for trustworthy AI policy guidelines, the AI responsibility-utility co-design, and incentives and compliance.
Abstract:Large Language models (LLMs) usually rely on extensive training datasets. In the financial domain, creating numerical reasoning datasets that include a mix of tables and long text often involves substantial manual annotation expenses. To address the limited data resources and reduce the annotation cost, we introduce FinLLMs, a method for generating financial question-answering data based on common financial formulas using Large Language Models. First, we compile a list of common financial formulas and construct a graph based on the variables these formulas employ. We then augment the formula set by combining those that share identical variables as new elements. Specifically, we explore formulas obtained by manual annotation and merge those formulas with shared variables by traversing the constructed graph. Finally, utilizing GPT-3.5, we generate financial question-answering data that encompasses both tabular information and long textual content, building on the collected formula set. Our experiments demonstrate that synthetic data generated by FinLLMs effectively enhances the performance of several large-scale numerical reasoning models in the financial domain, outperforming two established benchmark financial question-answering datasets.
Abstract:Revolutionized by the transformer architecture, natural language processing (NLP) has received unprecedented attention. While advancements in NLP models have led to extensive research into their backdoor vulnerabilities, the potential for these advancements to introduce new backdoor threats remains unexplored. This paper proposes Imperio, which harnesses the language understanding capabilities of NLP models to enrich backdoor attacks. Imperio provides a new model control experience. It empowers the adversary to control the victim model with arbitrary output through language-guided instructions. This is achieved using a language model to fuel a conditional trigger generator, with optimizations designed to extend its language understanding capabilities to backdoor instruction interpretation and execution. Our experiments across three datasets, five attacks, and nine defenses confirm Imperio's effectiveness. It can produce contextually adaptive triggers from text descriptions and control the victim model with desired outputs, even in scenarios not encountered during training. The attack maintains a high success rate across complex datasets without compromising the accuracy of clean inputs and also exhibits resilience against representative defenses. The source code is available at \url{https://khchow.com/Imperio}.
Abstract:Deep neural network ensembles combine the wisdom of multiple deep neural networks to improve the generalizability and robustness over individual networks. It has gained increasing popularity to study deep ensemble techniques in the deep learning community. Some mission-critical applications utilize a large number of deep neural networks to form deep ensembles to achieve desired accuracy and resilience, which introduces high time and space costs for ensemble execution. However, it still remains a critical challenge whether a small subset of the entire deep ensemble can achieve the same or better generalizability and how to effectively identify these small deep ensembles for improving the space and time efficiency of ensemble execution. This paper presents a novel deep ensemble pruning approach, which can efficiently identify smaller deep ensembles and provide higher ensemble accuracy than the entire deep ensemble of a large number of member networks. Our hierarchical ensemble pruning approach (HQ) leverages three novel ensemble pruning techniques. First, we show that the focal diversity metrics can accurately capture the complementary capacity of the member networks of an ensemble, which can guide ensemble pruning. Second, we design a focal diversity based hierarchical pruning approach, which will iteratively find high quality deep ensembles with low cost and high accuracy. Third, we develop a focal diversity consensus method to integrate multiple focal diversity metrics to refine ensemble pruning results, where smaller deep ensembles can be effectively identified to offer high accuracy, high robustness and high efficiency. Evaluated using popular benchmark datasets, we demonstrate that the proposed hierarchical ensemble pruning approach can effectively identify high quality deep ensembles with better generalizability while being more time and space efficient in ensemble decision making.
Abstract:Deep neural network ensembles hold the potential of improving generalization performance for complex learning tasks. This paper presents formal analysis and empirical evaluation to show that heterogeneous deep ensembles with high ensemble diversity can effectively leverage model learning heterogeneity to boost ensemble robustness. We first show that heterogeneous DNN models trained for solving the same learning problem, e.g., object detection, can significantly strengthen the mean average precision (mAP) through our weighted bounding box ensemble consensus method. Second, we further compose ensembles of heterogeneous models for solving different learning problems, e.g., object detection and semantic segmentation, by introducing the connected component labeling (CCL) based alignment. We show that this two-tier heterogeneity driven ensemble construction method can compose an ensemble team that promotes high ensemble diversity and low negative correlation among member models of the ensemble, strengthening ensemble robustness against both negative examples and adversarial attacks. Third, we provide a formal analysis of the ensemble robustness in terms of negative correlation. Extensive experiments validate the enhanced robustness of heterogeneous ensembles in both benign and adversarial settings. The source codes are available on GitHub at https://github.com/git-disl/HeteRobust.
Abstract:Diffusion models have gained prominence in the image domain for their capabilities in data generation and transformation, achieving state-of-the-art performance in various tasks in both image and audio domains. In the rapidly evolving field of audio-based machine learning, safeguarding model integrity and establishing data copyright are of paramount importance. This paper presents the first watermarking technique applied to audio diffusion models trained on mel-spectrograms. This offers a novel approach to the aforementioned challenges. Our model excels not only in benign audio generation, but also incorporates an invisible watermarking trigger mechanism for model verification. This watermark trigger serves as a protective layer, enabling the identification of model ownership and ensuring its integrity. Through extensive experiments, we demonstrate that invisible watermark triggers can effectively protect against unauthorized modifications while maintaining high utility in benign audio generation tasks.
Abstract:Large Language Models (LLMs) represent the recent success of deep learning in achieving remarkable human-like predictive performance. It has become a mainstream strategy to leverage fine-tuning to adapt LLMs for various real-world applications due to the prohibitive expenses associated with LLM training. The learning rate is one of the most important hyperparameters in LLM fine-tuning with direct impacts on both fine-tuning efficiency and fine-tuned LLM quality. Existing learning rate policies are primarily designed for training traditional deep neural networks (DNNs), which may not work well for LLM fine-tuning. We reassess the research challenges and opportunities of learning rate tuning in the coming era of Large Language Models. This paper makes three original contributions. First, we revisit existing learning rate policies to analyze the critical challenges of learning rate tuning in the era of LLMs. Second, we present LRBench++ to benchmark learning rate policies and facilitate learning rate tuning for both traditional DNNs and LLMs. Third, our experimental analysis with LRBench++ demonstrates the key differences between LLM fine-tuning and traditional DNN training and validates our analysis.
Abstract:Predicting information cascade popularity is a fundamental problem in social networks. Capturing temporal attributes and cascade role information (e.g., cascade graphs and cascade sequences) is necessary for understanding the information cascade. Current methods rarely focus on unifying this information for popularity predictions, which prevents them from effectively modeling the full properties of cascades to achieve satisfactory prediction performances. In this paper, we propose an explicit Time embedding based Cascade Attention Network (TCAN) as a novel popularity prediction architecture for large-scale information networks. TCAN integrates temporal attributes (i.e., periodicity, linearity, and non-linear scaling) into node features via a general time embedding approach (TE), and then employs a cascade graph attention encoder (CGAT) and a cascade sequence attention encoder (CSAT) to fully learn the representation of cascade graphs and cascade sequences. We use two real-world datasets (i.e., Weibo and APS) with tens of thousands of cascade samples to validate our methods. Experimental results show that TCAN obtains mean logarithm squared errors of 2.007 and 1.201 and running times of 1.76 hours and 0.15 hours on both datasets, respectively. Furthermore, TCAN outperforms other representative baselines by 10.4%, 3.8%, and 10.4% in terms of MSLE, MAE, and R-squared on average while maintaining good interpretability.