Abstract:Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network (RNN) blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique "refreshing" mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh-Nagumo system, the Reaction-Diffusion equation, and Kuramoto-Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.
Abstract:The advent of fifth generation (5G) networks has opened new avenues for enhancing connectivity, particularly in challenging environments like remote areas or disaster-struck regions. Unmanned aerial vehicles (UAVs) have been identified as a versatile tool in this context, particularly for improving network performance through the Integrated access and backhaul (IAB) feature of 5G. However, existing approaches to UAV-assisted network enhancement face limitations in dynamically adapting to varying user locations and network demands. This paper introduces a novel approach leveraging deep reinforcement learning (DRL) to optimize UAV placement in real-time, dynamically adjusting to changing network conditions and user requirements. Our method focuses on the intricate balance between fronthaul and backhaul links, a critical aspect often overlooked in current solutions. The unique contribution of this work lies in its ability to autonomously position UAVs in a way that not only ensures robust connectivity to ground users but also maintains seamless integration with central network infrastructure. Through various simulated scenarios, we demonstrate how our approach effectively addresses these challenges, enhancing coverage and network performance in critical areas. This research fills a significant gap in UAV-assisted 5G networks, providing a scalable and adaptive solution for future mobile networks.
Abstract:Unmanned aerial vehicles (UAVs) with on-board cameras are widely used for remote surveillance and video capturing applications. In remote virtual reality (VR) applications, multiple UAVs can be used to capture different partially overlapping angles of the ground target, which can be stitched together to provide 360{\deg} views. This requires coordinated formation of UAVs that is adaptive to movements of the ground target. In this paper, we propose a joint UAV formation and tracking framework to capture 360{\deg} angles of the target. The proposed framework uses a zero touch approach for automated and adaptive reconfiguration of multiple UAVs in a coordinated manner without the need for human intervention. This is suited to both military and civilian applications. Simulation results demonstrate the convergence and configuration of the UAVs with arbitrary initial locations and orientations. The performance has been tested for various number of UAVs and different mobility patterns of the ground target.