Abstract:Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network (RNN) blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique "refreshing" mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh-Nagumo system, the Reaction-Diffusion equation, and Kuramoto-Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.
Abstract:Multiscale is a hallmark feature of complex nonlinear systems. While the simulation using the classical numerical methods is restricted by the local \textit{Taylor} series constraints, the multiscale techniques are often limited by finding heuristic closures. This study proposes a new method for simulating multiscale problems using deep neural networks. By leveraging the hierarchical learning of neural network time steppers, the method adapts time steps to approximate dynamical system flow maps across timescales. This approach achieves state-of-the-art performance in less computational time compared to fixed-step neural network solvers. The proposed method is demonstrated on several nonlinear dynamical systems, and source codes are provided for implementation. This method has the potential to benefit multiscale analysis of complex systems and encourage further investigation in this area.