Abstract:Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
Abstract:Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process. A side effect of data imbalance occurs when a few abnormal data face a vast number of normal data. The latest VAD works use triplet loss or data re-sampling strategy to lessen this problem. However, there is still no elaborately designed structure for discriminative VAD with a few anomalies. In this paper, we propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance. We use two shallow discriminators to tighten the normal feature distribution boundary along with a generator for the next frame prediction. Further, we propose a dual memory module to obtain a sparse feature representation in both normality and abnormality space. As a result, DREAM not only solves the data imbalance problem but also learn a reasonable feature space. Further theoretical analysis shows that our DREAM also works for the unknown anomalies. Comparing with the previous methods on UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech, our model outperforms all the baselines with no extra parameters. The ablation study demonstrates the effectiveness of our dual memory module and discriminative-generative network.
Abstract:Today, scene graph generation(SGG) task is largely limited in realistic scenarios, mainly due to the extremely long-tailed bias of predicate annotation distribution. Thus, tackling the class imbalance trouble of SGG is critical and challenging. In this paper, we first discover that when predicate labels have strong correlation with each other, prevalent re-balancing strategies(e.g., re-sampling and re-weighting) will give rise to either over-fitting the tail data(e.g., bench sitting on sidewalk rather than on), or still suffering the adverse effect from the original uneven distribution(e.g., aggregating varied parked on/standing on/sitting on into on). We argue the principal reason is that re-balancing strategies are sensitive to the frequencies of predicates yet blind to their relatedness, which may play a more important role to promote the learning of predicate features. Therefore, we propose a novel Predicate-Correlation Perception Learning(PCPL for short) scheme to adaptively seek out appropriate loss weights by directly perceiving and utilizing the correlation among predicate classes. Moreover, our PCPL framework is further equipped with a graph encoder module to better extract context features. Extensive experiments on the benchmark VG150 dataset show that the proposed PCPL performs markedly better on tail classes while well-preserving the performance on head ones, which significantly outperforms previous state-of-the-art methods.
Abstract:Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its transformation should share similar semantic clustering assignment. However, the representation features could be quite different even they are assigned to the same cluster since softmax function is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. To address this drawback, we proposed Deep Robust Clustering (DRC). Different from existing methods, DRC looks into deep clustering from two perspectives of both semantic clustering assignment and representation feature, which can increase inter-class diversities and decrease intra-class diversities simultaneously. Furthermore, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss by investigating the internal relationship between mutual information and contrastive learning. And we successfully applied it in DRC to learn invariant features and robust clusters. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.
Abstract:With the rise of deep learning methods, person Re-Identification (ReID) performance has been improved tremendously in many public datasets. However, most public ReID datasets are collected in a short time window in which persons' appearance rarely changes. In real-world applications such as in a shopping mall, the same person's clothing may change, and different persons may wearing similar clothes. All these cases can result in an inconsistent ReID performance, revealing a critical problem that current ReID models heavily rely on person's apparels. Therefore, it is critical to learn an apparel-invariant person representation under cases like cloth changing or several persons wearing similar clothes. In this work, we tackle this problem from the viewpoint of invariant feature representation learning. The main contributions of this work are as follows. (1) We propose the semi-supervised Apparel-invariant Feature Learning (AIFL) framework to learn an apparel-invariant pedestrian representation using images of the same person wearing different clothes. (2) To obtain images of the same person wearing different clothes, we propose an unsupervised apparel-simulation GAN (AS-GAN) to synthesize cloth changing images according to the target cloth embedding. It's worth noting that the images used in ReID tasks were cropped from real-world low-quality CCTV videos, making it more challenging to synthesize cloth changing images. We conduct extensive experiments on several datasets comparing with several baselines. Experimental results demonstrate that our proposal can improve the ReID performance of the baseline models.
Abstract:How to learn a stable model under agnostic distribution shift between training and testing datasets is an essential problem in machine learning tasks. The agnostic distribution shift caused by data generation bias can lead to model misspecification and unstable performance across different test datasets. Most of the recently proposed methods are causality-based sample reweighting methods, whose performance is affected by sample size. Moreover, these works are restricted to linear models, not to deep-learning based nonlinear models. In this work, we propose a novel Causality-based Feature Rectification (CFR) method to address the model misspecification problem under agnostic distribution shift by using a weight matrix to rectify features. Our proposal based on the fact that the causality between stable features and the ground truth is consistent under agnostic distribution shift, but is partly omitted and statistically correlated with other features. We propose the feature rectification weight matrix to reconstruct the omitted causality by using other features as proxy variables. We further propose an algorithm that jointly optimizes the weight matrix and the regressor (or classifier). Our proposal can not only improve the stability of linear models, but also deep-learning based models. Extensive experiments on both synthetic and real-world datasets demonstrate that our proposal outperforms previous state-of-the-art stable learning methods. The code will be released later on.
Abstract:Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Abstract:As an adaptive, interpretable, robust, and accurate meta-algorithm for arbitrary differentiable loss functions, gradient tree boosting is one of the most popular machine learning techniques, though the computational expensiveness severely limits its usage. Stochastic gradient boosting could be adopted to accelerates gradient boosting by uniformly sampling training instances, but its estimator could introduce a high variance. This situation arises motivation for us to optimize gradient tree boosting. We combine gradient tree boosting with importance sampling, which achieves better performance by reducing the stochastic variance. Furthermore, we use a regularizer to improve the diagonal approximation in the Newton step of gradient boosting. The theoretical analysis supports that our strategies achieve a linear convergence rate on logistic loss. Empirical results show that our algorithm achieves a 2.5x--18x acceleration on two different gradient boosting algorithms (LogitBoost and LambdaMART) without appreciable performance loss.
Abstract:Model fine-tuning is a widely used transfer learning approach in person Re-identification (ReID) applications, which fine-tuning a pre-trained feature extraction model into the target scenario instead of training a model from scratch. It is challenging due to the significant variations inside the target scenario, e.g., different camera viewpoint, illumination changes, and occlusion. These variations result in a gap between the distribution of each mini-batch and the distribution of the whole dataset when using mini-batch training. In this paper, we study model fine-tuning from the perspective of the aggregation and utilization of the global information of the dataset when using mini-batch training. Specifically, we introduce a novel network structure called Batch-related Convolutional Cell (BConv-Cell), which progressively collects the global information of the dataset into a latent state and uses this latent state to rectify the extracted feature. Based on BConv-Cells, we further proposed the Progressive Transfer Learning (PTL) method to facilitate the model fine-tuning process by joint training the BConv-Cells and the pre-trained ReID model. Empirical experiments show that our proposal can improve the performance of the ReID model greatly on MSMT17, Market-1501, CUHK03 and DukeMTMC-reID datasets. The code will be released later on at \url{https://github.com/ZJULearning/PTL}
Abstract:It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets' pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets' pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3\% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.