Abstract:Bayesian Last Layers (BLLs) provide a convenient and computationally efficient way to estimate uncertainty in neural networks. However, they underestimate epistemic uncertainty because they apply a Bayesian treatment only to the final layer, ignoring uncertainty induced by earlier layers. We propose a method that improves BLLs by leveraging a projection of Neural Tangent Kernel (NTK) features onto the space spanned by the last-layer features. This enables posterior inference that accounts for variability of the full network while retaining the low computational cost of inference of a standard BLL. We show that our method yields posterior variances that are provably greater or equal to those of a standard BLL, correcting its tendency to underestimate epistemic uncertainty. To further reduce computational cost, we introduce a uniform subsampling scheme for estimating the projection matrix and for posterior inference. We derive approximation bounds for both types of sub-sampling. Empirical evaluations on UCI regression, contextual bandits, image classification, and out-of-distribution detection tasks in image and tabular datasets, demonstrate improved calibration and uncertainty estimates compared to standard BLLs and competitive baselines, while reducing computational cost.
Abstract:Existing benchmarks for computational materials discovery primarily evaluate static predictive tasks or isolated computational sub-tasks. While valuable, these evaluations neglect the inherently iterative and adaptive nature of scientific discovery. We introduce MAterials Discovery Environments (MADE), a novel framework for benchmarking end-to-end autonomous materials discovery pipelines. MADE simulates closed-loop discovery campaigns in which an agent or algorithm proposes, evaluates, and refines candidate materials under a constrained oracle budget, capturing the sequential and resource-limited nature of real discovery workflows. We formalize discovery as a search for thermodynamically stable compounds relative to a given convex hull, and evaluate efficacy and efficiency via comparison to baseline algorithms. The framework is flexible; users can compose discovery agents from interchangeable components such as generative models, filters, and planners, enabling the study of arbitrary workflows ranging from fixed pipelines to fully agentic systems with tool use and adaptive decision making. We demonstrate this by conducting systematic experiments across a family of systems, enabling ablation of components in discovery pipelines, and comparison of how methods scale with system complexity.
Abstract:We show that iterative deployment of large language models (LLMs), each fine-tuned on data carefully curated by users from the previous models' deployment, can significantly change the properties of the resultant models. By testing this mechanism on various planning domains, we observe substantial improvements in planning skills, with later models displaying emergent generalization by discovering much longer plans than the initial models. We then provide theoretical analysis showing that iterative deployment effectively implements reinforcement learning (RL) training in the outer-loop (i.e. not as part of intentional model training), with an implicit reward function. The connection to RL has two important implications: first, for the field of AI safety, as the reward function entailed by repeated deployment is not defined explicitly, and could have unexpected implications to the properties of future model deployments. Second, the mechanism highlighted here can be viewed as an alternative training regime to explicit RL, relying on data curation rather than explicit rewards.
Abstract:Large Language Models (LLMs) interact with millions of people worldwide in applications such as customer support, education and healthcare. However, their ability to produce deceptive outputs, whether intentionally or inadvertently, poses significant safety concerns. The unpredictable nature of LLM behavior, combined with insufficient safeguards against hallucination, misinformation, and user manipulation, makes their misuse a serious, real-world risk. In this paper, we investigate the extent to which LLMs engage in deception within dialogue, and propose the belief misalignment metric to quantify deception. We evaluate deception across four distinct dialogue scenarios, using five established deception detection metrics and our proposed metric. Our findings reveal this novel deception measure correlates more closely with human judgments than any existing metrics we test. Additionally, our benchmarking of eight state-of-the-art models indicates that LLMs naturally exhibit deceptive behavior in approximately 26% of dialogue turns, even when prompted with seemingly benign objectives. When prompted to deceive, LLMs are capable of increasing deceptiveness by as much as 31% relative to baselines. Unexpectedly, models trained with RLHF, the predominant approach for ensuring the safety of widely-deployed LLMs, still exhibit deception at a rate of 43% on average. Given that deception in dialogue is a behavior that develops over an interaction history, its effective evaluation and mitigation necessitates moving beyond single-utterance analyses. We introduce a multi-turn reinforcement learning methodology to fine-tune LLMs to reduce deceptive behaviors, leading to a 77.6% reduction compared to other instruction-tuned models.
Abstract:Poisoning attacks can compromise the safety of large language models (LLMs) by injecting malicious documents into their training data. Existing work has studied pretraining poisoning assuming adversaries control a percentage of the training corpus. However, for large models, even small percentages translate to impractically large amounts of data. This work demonstrates for the first time that poisoning attacks instead require a near-constant number of documents regardless of dataset size. We conduct the largest pretraining poisoning experiments to date, pretraining models from 600M to 13B parameters on chinchilla-optimal datasets (6B to 260B tokens). We find that 250 poisoned documents similarly compromise models across all model and dataset sizes, despite the largest models training on more than 20 times more clean data. We also run smaller-scale experiments to ablate factors that could influence attack success, including broader ratios of poisoned to clean data and non-random distributions of poisoned samples. Finally, we demonstrate the same dynamics for poisoning during fine-tuning. Altogether, our results suggest that injecting backdoors through data poisoning may be easier for large models than previously believed as the number of poisons required does not scale up with model size, highlighting the need for more research on defences to mitigate this risk in future models.
Abstract:Reinforcement Learning, particularly through policy gradient methods, has played a central role in enabling reasoning capabilities of Large Language Models. However, the optimization stability of policy gradients in this setting remains understudied. As a result, existing implementations often resort to conservative hyperparameter choices to ensure stability, which requires more training samples and increases computational costs. Hence, developing models for reliably tracking the underlying optimization dynamics and leveraging them into training enables more sample-efficient regimes and further unleashes scalable post-training. We address this gap by formalizing the stochastic optimization problem of policy gradients with explicit consideration of second-order geometry. We propose a tractable computational framework that tracks and leverages curvature information during policy updates. We further employ this framework to design interventions in the optimization process through data selection. The resultant algorithm, Curvature-Aware Policy Optimization (CAPO), identifies samples that contribute to unstable updates and masks them out. Theoretically, we establish monotonic improvement guarantees under realistic assumptions. On standard math reasoning benchmarks, we empirically show that CAPO ensures stable updates under aggressive learning regimes where baselines catastrophically fail. With minimal intervention (rejecting fewer than 8% of tokens), CAPO achieves up to 30x improvement in sample efficiency over standard GRPO for LLM reasoning.
Abstract:Active testing enables label-efficient evaluation of models through careful data acquisition. However, its significant computational costs have previously undermined its use for large models. We show how it can be successfully scaled up to the evaluation of large language models (LLMs). In particular we show that the surrogate model used to guide data acquisition can be constructed cheaply using in-context learning, does not require updating within an active-testing loop, and can be smaller than the target model. We even find we can make good data-acquisition decisions without computing predictions with the target model and further introduce a single-run error estimator to asses how well active testing is working on the fly. We find that our approach is able to more effectively evaluate LLM performance with less data than current standard practices.
Abstract:Air pollution is the world's largest environmental risk factor for human disease and premature death, resulting in more than 6 million permature deaths in 2019. Currently, there is still a challenge to model one of the most important air pollutants, surface ozone, particularly at scales relevant for human health impacts, with the drivers of global ozone trends at these scales largely unknown, limiting the practical use of physics-based models. We employ a 2D Convolutional Neural Network based architecture that estimate surface ozone MOMO-Chem model residuals, referred to as model bias. We demonstrate the potential of this technique in North America and Europe, highlighting its ability better to capture physical model residuals compared to a traditional machine learning method. We assess the impact of incorporating land use information from high-resolution satellite imagery to improve model estimates. Importantly, we discuss how our results can improve our scientific understanding of the factors impacting ozone bias at urban scales that can be used to improve environmental policy.
Abstract:Air pollution is a global hazard, and as of 2023, 94\% of the world's population is exposed to unsafe pollution levels. Surface Ozone (O3), an important pollutant, and the drivers of its trends are difficult to model, and traditional physics-based models fall short in their practical use for scales relevant to human-health impacts. Deep Learning-based emulators have shown promise in capturing complex climate patterns, but overall lack the interpretability necessary to support critical decision making for policy changes and public health measures. We implement an uncertainty-aware U-Net architecture to predict the Multi-mOdel Multi-cOnstituent Chemical data assimilation (MOMO-Chem) model's surface ozone residuals (bias) using Bayesian and quantile regression methods. We demonstrate the capability of our techniques in regional estimation of bias in North America and Europe for June 2019. We highlight the uncertainty quantification (UQ) scores between our two UQ methodologies and discern which ground stations are optimal and sub-optimal candidates for MOMO-Chem bias correction, and evaluate the impact of land-use information in surface ozone residual modeling.
Abstract:Conditional flow matching (CFM) has emerged as a powerful framework for training continuous normalizing flows due to its computational efficiency and effectiveness. However, standard CFM often produces paths that deviate significantly from straight-line interpolations between prior and target distributions, making generation slower and less accurate due to the need for fine discretization at inference. Recent methods enhance CFM performance by inducing shorter and straighter trajectories but typically rely on computationally expensive mini-batch optimal transport (OT). Drawing insights from entropic optimal transport (EOT), we propose Weighted Conditional Flow Matching (W-CFM), a novel approach that modifies the classical CFM loss by weighting each training pair $(x, y)$ with a Gibbs kernel. We show that this weighting recovers the entropic OT coupling up to some bias in the marginals, and we provide the conditions under which the marginals remain nearly unchanged. Moreover, we establish an equivalence between W-CFM and the minibatch OT method in the large-batch limit, showing how our method overcomes computational and performance bottlenecks linked to batch size. Empirically, we test our method on unconditional generation on various synthetic and real datasets, confirming that W-CFM achieves comparable or superior sample quality, fidelity, and diversity to other alternative baselines while maintaining the computational efficiency of vanilla CFM.