University of Oxford
Abstract:AI control protocols are plans for usefully deploying AI systems in a way that is safe, even if the AI intends to subvert the protocol. Previous work evaluated protocols by subverting them with a human-AI red team, where an AI follows the human-written strategy. This paper investigates how well AI systems can generate and act on strategies for subverting control protocols whilst operating without private memory. Usually, decision-makers only need the ability to generate optimal plans. However, to subvert a protocol, an AI system must be able to reliably generate optimal plans in each context; coordinate plans with other instances of itself without communicating; and take actions with well-calibrated probabilities. We develop evaluations for a model's ability to generate subversion strategies and develop affordance experiments that help isolate component capabilities. Our initial evaluations with Claude-3.5-sonnet highlight reasons why statelessly strategizing to subvert control protocols might be hard. We hope that our work can serve as a starting point for evaluations aimed at assessing whether a model is capable of strategizing to subvert control protocols.
Abstract:The aim of inverse reinforcement learning (IRL) is to infer an agent's preferences from observing their behaviour. Usually, preferences are modelled as a reward function, $R$, and behaviour is modelled as a policy, $\pi$. One of the central difficulties in IRL is that multiple preferences may lead to the same observed behaviour. That is, $R$ is typically underdetermined by $\pi$, which means that $R$ is only partially identifiable. Recent work has characterised the extent of this partial identifiability for different types of agents, including optimal and Boltzmann-rational agents. However, work so far has only considered agents that discount future reward exponentially: this is a serious limitation, especially given that extensive work in the behavioural sciences suggests that humans are better modelled as discounting hyperbolically. In this work, we newly characterise partial identifiability in IRL for agents with non-exponential discounting: our results are in particular relevant for hyperbolical discounting, but they also more generally apply to agents that use other types of (non-exponential) discounting. We significantly show that generally IRL is unable to infer enough information about $R$ to identify the correct optimal policy, which entails that IRL alone can be insufficient to adequately characterise the preferences of such agents.
Abstract:In light of the inherently complex and dynamic nature of real-world environments, incorporating risk measures is crucial for the robustness evaluation of deep learning models. In this work, we propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN. Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN, represented using a set of template polytopes. To enhance robustness evaluation, we integrate a coherent distortion risk measure--Conditional Value at Risk (CVaR)--into the certification framework, providing probabilistic guarantees based on empirical distributions obtained through sampling. We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method. The results show that RAC-BNN effectively quantifies robustness under worst-performing risky scenarios, and achieves tighter certified bounds and higher efficiency in complex tasks.
Abstract:The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $\pi$. This problem is difficult, for several reasons. First of all, there are typically multiple reward functions which are compatible with a given policy; this means that the reward function is only *partially identifiable*, and that IRL contains a certain fundamental degree of ambiguity. Secondly, in order to infer $R$ from $\pi$, an IRL algorithm must have a *behavioural model* of how $\pi$ relates to $R$. However, the true relationship between human preferences and human behaviour is very complex, and practically impossible to fully capture with a simple model. This means that the behavioural model in practice will be *misspecified*, which raises the worry that it might lead to unsound inferences if applied to real-world data. In this paper, we provide a comprehensive mathematical analysis of partial identifiability and misspecification in IRL. Specifically, we fully characterise and quantify the ambiguity of the reward function for all of the behavioural models that are most common in the current IRL literature. We also provide necessary and sufficient conditions that describe precisely how the observed demonstrator policy may differ from each of the standard behavioural models before that model leads to faulty inferences about the reward function $R$. In addition to this, we introduce a cohesive framework for reasoning about partial identifiability and misspecification in IRL, together with several formal tools that can be used to easily derive the partial identifiability and misspecification robustness of new IRL models, or analyse other kinds of reward learning algorithms.
Abstract:A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks. This adaptability allows them to respond to potentially inevitable shifts in the data-generating distribution over time. However, in Continual Learning (CL) settings, models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. Variational Continual Learning methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution and enforces it to stay close to the latest posterior estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. We evaluate the proposed objectives on challenging versions of popular CL benchmarks, demonstrating that they outperform standard Variational CL methods and non-variational baselines, effectively alleviating Catastrophic Forgetting.
Abstract:Linear temporal logic (LTL) has recently been adopted as a powerful formalism for specifying complex, temporally extended tasks in reinforcement learning (RL). However, learning policies that efficiently satisfy arbitrary specifications not observed during training remains a challenging problem. Existing approaches suffer from several shortcomings: they are often only applicable to finite-horizon fragments of LTL, are restricted to suboptimal solutions, and do not adequately handle safety constraints. In this work, we propose a novel learning approach to address these concerns. Our method leverages the structure of B\"uchi automata, which explicitly represent the semantics of LTL specifications, to learn policies conditioned on sequences of truth assignments that lead to satisfying the desired formulae. Experiments in a variety of discrete and continuous domains demonstrate that our approach is able to zero-shot satisfy a wide range of finite- and infinite-horizon specifications, and outperforms existing methods in terms of both satisfaction probability and efficiency.
Abstract:To evaluate the safety and usefulness of deployment protocols for untrusted AIs, AI Control uses a red-teaming exercise played between a protocol designer and an adversary. This paper introduces AI-Control Games, a formal decision-making model of the red-teaming exercise as a multi-objective, partially observable, stochastic game. We also introduce methods for finding optimal protocols in AI-Control Games, by reducing them to a set of zero-sum partially observable stochastic games. We apply our formalism to model, evaluate and synthesise protocols for deploying untrusted language models as programming assistants, focusing on Trusted Monitoring protocols, which use weaker language models and limited human assistance. Finally, we demonstrate the utility of our formalism by showcasing improvements over empirical studies in existing settings, evaluating protocols in new settings, and analysing how modelling assumptions affect the safety and usefulness of protocols.
Abstract:Recent works have provided algorithms by which decentralised agents, which may be connected via a communication network, can learn equilibria in Mean-Field Games from a single, non-episodic run of the empirical system. However, these algorithms are given for tabular settings: this computationally limits the size of players' observation space, meaning that the algorithms are not able to handle anything but small state spaces, nor to generalise beyond policies depending on the ego player's state to so-called 'population-dependent' policies. We address this limitation by introducing function approximation to the existing setting, drawing on the Munchausen Online Mirror Descent method that has previously been employed only in finite-horizon, episodic, centralised settings. While this permits us to include the population's mean-field distribution in the observation for each player's policy, it is arguably unrealistic to assume that decentralised agents would have access to this global information: we therefore additionally provide new algorithms that allow agents to estimate the global empirical distribution based on a local neighbourhood, and to improve this estimate via communication over a given network. Our experiments showcase how the communication network allows decentralised agents to estimate the mean-field distribution for population-dependent policies, and that exchanging policy information helps networked agents to outperform both independent and even centralised agents in function-approximation settings, by an even greater margin than in tabular settings.
Abstract:We present a data-driven approach for learning MDP policies that are robust across stochastic environments whose transition probabilities are defined by parameters with an unknown distribution. We produce probably approximately correct (PAC) guarantees for the performance of these learned policies in a new, unseen environment over the unknown distribution. Our approach is based on finite samples of the MDP environments, for each of which we build an approximation of the model as an interval MDP, by exploring a set of generated trajectories. We use the built approximations to synthesise a single policy that performs well (meets given requirements) across the sampled environments, and furthermore bound its risk (of not meeting the given requirements) when deployed in an unseen environment. Our procedure offers a trade-off between the guaranteed performance of the learned policy and the risk of not meeting the guarantee in an unseen environment. Our approach exploits knowledge of the environment's state space and graph structure, and we show how additional knowledge of its parametric structure can be leveraged to optimize learning and to obtain tighter guarantees from less samples. We evaluate our approach on a diverse range of established benchmarks, demonstrating that we can generate highly performing and robust policies, along with guarantees that tightly quantify their performance and the associated risk.
Abstract:The goal of Bayesian inverse reinforcement learning (IRL) is recovering a posterior distribution over reward functions using a set of demonstrations from an expert optimizing for a reward unknown to the learner. The resulting posterior over rewards can then be used to synthesize an apprentice policy that performs well on the same or a similar task. A key challenge in Bayesian IRL is bridging the computational gap between the hypothesis space of possible rewards and the likelihood, often defined in terms of Q values: vanilla Bayesian IRL needs to solve the costly forward planning problem - going from rewards to the Q values - at every step of the algorithm, which may need to be done thousands of times. We propose to solve this by a simple change: instead of focusing on primarily sampling in the space of rewards, we can focus on primarily working in the space of Q-values, since the computation required to go from Q-values to reward is radically cheaper. Furthermore, this reversion of the computation makes it easy to compute the gradient allowing efficient sampling using Hamiltonian Monte Carlo. We propose ValueWalk - a new Markov chain Monte Carlo method based on this insight - and illustrate its advantages on several tasks.