Abstract:AI control protocols are plans for usefully deploying AI systems in a way that is safe, even if the AI intends to subvert the protocol. Previous work evaluated protocols by subverting them with a human-AI red team, where an AI follows the human-written strategy. This paper investigates how well AI systems can generate and act on strategies for subverting control protocols whilst operating without private memory. Usually, decision-makers only need the ability to generate optimal plans. However, to subvert a protocol, an AI system must be able to reliably generate optimal plans in each context; coordinate plans with other instances of itself without communicating; and take actions with well-calibrated probabilities. We develop evaluations for a model's ability to generate subversion strategies and develop affordance experiments that help isolate component capabilities. Our initial evaluations with Claude-3.5-sonnet highlight reasons why statelessly strategizing to subvert control protocols might be hard. We hope that our work can serve as a starting point for evaluations aimed at assessing whether a model is capable of strategizing to subvert control protocols.
Abstract:To evaluate the safety and usefulness of deployment protocols for untrusted AIs, AI Control uses a red-teaming exercise played between a protocol designer and an adversary. This paper introduces AI-Control Games, a formal decision-making model of the red-teaming exercise as a multi-objective, partially observable, stochastic game. We also introduce methods for finding optimal protocols in AI-Control Games, by reducing them to a set of zero-sum partially observable stochastic games. We apply our formalism to model, evaluate and synthesise protocols for deploying untrusted language models as programming assistants, focusing on Trusted Monitoring protocols, which use weaker language models and limited human assistance. Finally, we demonstrate the utility of our formalism by showcasing improvements over empirical studies in existing settings, evaluating protocols in new settings, and analysing how modelling assumptions affect the safety and usefulness of protocols.
Abstract:Many capable large language models (LLMs) are developed via self-supervised pre-training followed by a reinforcement-learning fine-tuning phase, often based on human or AI feedback. During this stage, models may be guided by their inductive biases to rely on simpler features which may be easier to extract, at a cost to robustness and generalisation. We investigate whether principles governing inductive biases in the supervised fine-tuning of LLMs also apply when the fine-tuning process uses reinforcement learning. Following Lovering et al (2021), we test two hypotheses: that features more $\textit{extractable}$ after pre-training are more likely to be utilised by the final policy, and that the evidence for/against a feature predicts whether it will be utilised. Through controlled experiments on synthetic and natural language tasks, we find statistically significant correlations which constitute strong evidence for these hypotheses.
Abstract:To solve a task with reinforcement learning (RL), it is necessary to formally specify the goal of that task. Although most RL algorithms require that the goal is formalised as a Markovian reward function, alternatives have been developed (such as Linear Temporal Logic and Multi-Objective Reinforcement Learning). Moreover, it is well known that some of these formalisms are able to express certain tasks that other formalisms cannot express. However, there has not yet been any thorough analysis of how these formalisms relate to each other in terms of expressivity. In this work, we fill this gap in the existing literature by providing a comprehensive comparison of the expressivities of 17 objective-specification formalisms in RL. We place these formalisms in a preorder based on their expressive power, and present this preorder as a Hasse diagram. We find a variety of limitations for the different formalisms, and that no formalism is both dominantly expressive and straightforward to optimise with current techniques. For example, we prove that each of Regularised RL, Outer Nonlinear Markov Rewards, Reward Machines, Linear Temporal Logic, and Limit Average Rewards can express an objective that the others cannot. Our findings have implications for both policy optimisation and reward learning. Firstly, we identify expressivity limitations which are important to consider when specifying objectives in practice. Secondly, our results highlight the need for future research which adapts reward learning to work with a variety of formalisms, since many existing reward learning methods implicitly assume that desired objectives can be expressed with Markovian rewards. Our work contributes towards a more cohesive understanding of the costs and benefits of different RL objective-specification formalisms.
Abstract:Implementing a reward function that perfectly captures a complex task in the real world is impractical. As a result, it is often appropriate to think of the reward function as a proxy for the true objective rather than as its definition. We study this phenomenon through the lens of Goodhart's law, which predicts that increasing optimisation of an imperfect proxy beyond some critical point decreases performance on the true objective. First, we propose a way to quantify the magnitude of this effect and show empirically that optimising an imperfect proxy reward often leads to the behaviour predicted by Goodhart's law for a wide range of environments and reward functions. We then provide a geometric explanation for why Goodhart's law occurs in Markov decision processes. We use these theoretical insights to propose an optimal early stopping method that provably avoids the aforementioned pitfall and derive theoretical regret bounds for this method. Moreover, we derive a training method that maximises worst-case reward, for the setting where there is uncertainty about the true reward function. Finally, we evaluate our early stopping method experimentally. Our results support a foundation for a theoretically-principled study of reinforcement learning under reward misspecification.
Abstract:In this work we introduce reinforcement learning techniques for solving lexicographic multi-objective problems. These are problems that involve multiple reward signals, and where the goal is to learn a policy that maximises the first reward signal, and subject to this constraint also maximises the second reward signal, and so on. We present a family of both action-value and policy gradient algorithms that can be used to solve such problems, and prove that they converge to policies that are lexicographically optimal. We evaluate the scalability and performance of these algorithms empirically, demonstrating their practical applicability. As a more specific application, we show how our algorithms can be used to impose safety constraints on the behaviour of an agent, and compare their performance in this context with that of other constrained reinforcement learning algorithms.
Abstract:Privacy considerations and bias in datasets are quickly becoming high-priority issues that the computer vision community needs to face. So far, little attention has been given to practical solutions that do not involve collection of new datasets. In this work, we show that for object detection on COCO, both anonymizing the dataset by blurring faces, as well as swapping faces in a balanced manner along the gender and skin tone dimension, can retain object detection performances while preserving privacy and partially balancing bias.