To solve a task with reinforcement learning (RL), it is necessary to formally specify the goal of that task. Although most RL algorithms require that the goal is formalised as a Markovian reward function, alternatives have been developed (such as Linear Temporal Logic and Multi-Objective Reinforcement Learning). Moreover, it is well known that some of these formalisms are able to express certain tasks that other formalisms cannot express. However, there has not yet been any thorough analysis of how these formalisms relate to each other in terms of expressivity. In this work, we fill this gap in the existing literature by providing a comprehensive comparison of the expressivities of 17 objective-specification formalisms in RL. We place these formalisms in a preorder based on their expressive power, and present this preorder as a Hasse diagram. We find a variety of limitations for the different formalisms, and that no formalism is both dominantly expressive and straightforward to optimise with current techniques. For example, we prove that each of Regularised RL, Outer Nonlinear Markov Rewards, Reward Machines, Linear Temporal Logic, and Limit Average Rewards can express an objective that the others cannot. Our findings have implications for both policy optimisation and reward learning. Firstly, we identify expressivity limitations which are important to consider when specifying objectives in practice. Secondly, our results highlight the need for future research which adapts reward learning to work with a variety of formalisms, since many existing reward learning methods implicitly assume that desired objectives can be expressed with Markovian rewards. Our work contributes towards a more cohesive understanding of the costs and benefits of different RL objective-specification formalisms.