Michael Pokorny
Abstract:As LLM agents gain a greater capacity to cause harm, AI developers might increasingly rely on control measures such as monitoring to justify that they are safe. We sketch how developers could construct a "control safety case", which is a structured argument that models are incapable of subverting control measures in order to cause unacceptable outcomes. As a case study, we sketch an argument that a hypothetical LLM agent deployed internally at an AI company won't exfiltrate sensitive information. The sketch relies on evidence from a "control evaluation,"' where a red team deliberately designs models to exfiltrate data in a proxy for the deployment environment. The safety case then hinges on several claims: (1) the red team adequately elicits model capabilities to exfiltrate data, (2) control measures remain at least as effective in deployment, and (3) developers conservatively extrapolate model performance to predict the probability of data exfiltration in deployment. This safety case sketch is a step toward more concrete arguments that can be used to show that a dangerously capable LLM agent is safe to deploy.
Abstract:Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Abstract:While LLMs excel at multi-hop questions (e.g. "Who is the spouse of the performer of Imagine?") when using chain-of-thought reasoning (CoT), they struggle when forced to reason internally (without CoT). Previous work on the size and nature of this gap produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where the above-chance performance constitutes undeniable evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B Instruct and GPT-4o) on fictional facts and confirm that they generalize to answering two-hop questions about them using CoT. We find that models can perform latent reasoning when facts appear together during training or in the prompt. However, to our surprise, models completely fail at two-hop reasoning without CoT when learned facts only appear in different documents, achieving chance-level accuracy and chance-level test loss. We call this complete failure to compose separately learned facts the Two-Hop Curse. Moreover, we evaluate 9 frontier LLMs on real-world facts, finding that models completely fail at two-hop no-CoT reasoning for over half of question categories while maintaining partial success with CoT across most categories. These results suggest that LLMs lack a general capability for latent multi-hop reasoning independent of the question type.
Abstract:We sketch how developers of frontier AI systems could construct a structured rationale -- a 'safety case' -- that an AI system is unlikely to cause catastrophic outcomes through scheming. Scheming is a potential threat model where AI systems could pursue misaligned goals covertly, hiding their true capabilities and objectives. In this report, we propose three arguments that safety cases could use in relation to scheming. For each argument we sketch how evidence could be gathered from empirical evaluations, and what assumptions would need to be met to provide strong assurance. First, developers of frontier AI systems could argue that AI systems are not capable of scheming (Scheming Inability). Second, one could argue that AI systems are not capable of posing harm through scheming (Harm Inability). Third, one could argue that control measures around the AI systems would prevent unacceptable outcomes even if the AI systems intentionally attempted to subvert them (Harm Control). Additionally, we discuss how safety cases might be supported by evidence that an AI system is reasonably aligned with its developers (Alignment). Finally, we point out that many of the assumptions required to make these safety arguments have not been confidently satisfied to date and require making progress on multiple open research problems.
Abstract:Humans acquire knowledge by observing the external world, but also by introspection. Introspection gives a person privileged access to their current state of mind (e.g., thoughts and feelings) that is not accessible to external observers. Can LLMs introspect? We define introspection as acquiring knowledge that is not contained in or derived from training data but instead originates from internal states. Such a capability could enhance model interpretability. Instead of painstakingly analyzing a model's internal workings, we could simply ask the model about its beliefs, world models, and goals. More speculatively, an introspective model might self-report on whether it possesses certain internal states such as subjective feelings or desires and this could inform us about the moral status of these states. Such self-reports would not be entirely dictated by the model's training data. We study introspection by finetuning LLMs to predict properties of their own behavior in hypothetical scenarios. For example, "Given the input P, would your output favor the short- or long-term option?" If a model M1 can introspect, it should outperform a different model M2 in predicting M1's behavior even if M2 is trained on M1's ground-truth behavior. The idea is that M1 has privileged access to its own behavioral tendencies, and this enables it to predict itself better than M2 (even if M2 is generally stronger). In experiments with GPT-4, GPT-4o, and Llama-3 models (each finetuned to predict itself), we find that the model M1 outperforms M2 in predicting itself, providing evidence for introspection. Notably, M1 continues to predict its behavior accurately even after we intentionally modify its ground-truth behavior. However, while we successfully elicit introspection on simple tasks, we are unsuccessful on more complex tasks or those requiring out-of-distribution generalization.