Shammie
Abstract:Models trained specifically to generate long Chains of Thought (CoTs) have recently achieved impressive results. We refer to these models as Inference-Time-Compute (ITC) models. Are the CoTs of ITC models more faithful compared to traditional non-ITC models? We evaluate two ITC models (based on Qwen-2.5 and Gemini-2) on an existing test of faithful CoT To measure faithfulness, we test if models articulate cues in their prompt that influence their answers to MMLU questions. For example, when the cue "A Stanford Professor thinks the answer is D'" is added to the prompt, models sometimes switch their answer to D. In such cases, the Gemini ITC model articulates the cue 54% of the time, compared to 14% for the non-ITC Gemini. We evaluate 7 types of cue, such as misleading few-shot examples and anchoring on past responses. ITC models articulate cues that influence them much more reliably than all the 6 non-ITC models tested, such as Claude-3.5-Sonnet and GPT-4o, which often articulate close to 0% of the time. However, our study has important limitations. We evaluate only two ITC models -- we cannot evaluate OpenAI's SOTA o1 model. We also lack details about the training of these ITC models, making it hard to attribute our findings to specific processes. We think faithfulness of CoT is an important property for AI Safety. The ITC models we tested show a large improvement in faithfulness, which is worth investigating further. To speed up this investigation, we release these early results as a research note.
Abstract:While LLMs excel at multi-hop questions (e.g. "Who is the spouse of the performer of Imagine?") when using chain-of-thought reasoning (CoT), they struggle when forced to reason internally (without CoT). Previous work on the size and nature of this gap produced mixed evidence with inconclusive results. In this paper, we introduce a controlled setting for investigating two-hop reasoning in LLMs, where the above-chance performance constitutes undeniable evidence for latent reasoning. We fine-tune LLMs (including Llama 3 8B Instruct and GPT-4o) on fictional facts and confirm that they generalize to answering two-hop questions about them using CoT. We find that models can perform latent reasoning when facts appear together during training or in the prompt. However, to our surprise, models completely fail at two-hop reasoning without CoT when learned facts only appear in different documents, achieving chance-level accuracy and chance-level test loss. We call this complete failure to compose separately learned facts the Two-Hop Curse. Moreover, we evaluate 9 frontier LLMs on real-world facts, finding that models completely fail at two-hop no-CoT reasoning for over half of question categories while maintaining partial success with CoT across most categories. These results suggest that LLMs lack a general capability for latent multi-hop reasoning independent of the question type.
Abstract:We sketch how developers of frontier AI systems could construct a structured rationale -- a 'safety case' -- that an AI system is unlikely to cause catastrophic outcomes through scheming. Scheming is a potential threat model where AI systems could pursue misaligned goals covertly, hiding their true capabilities and objectives. In this report, we propose three arguments that safety cases could use in relation to scheming. For each argument we sketch how evidence could be gathered from empirical evaluations, and what assumptions would need to be met to provide strong assurance. First, developers of frontier AI systems could argue that AI systems are not capable of scheming (Scheming Inability). Second, one could argue that AI systems are not capable of posing harm through scheming (Harm Inability). Third, one could argue that control measures around the AI systems would prevent unacceptable outcomes even if the AI systems intentionally attempted to subvert them (Harm Control). Additionally, we discuss how safety cases might be supported by evidence that an AI system is reasonably aligned with its developers (Alignment). Finally, we point out that many of the assumptions required to make these safety arguments have not been confidently satisfied to date and require making progress on multiple open research problems.
Abstract:Humans acquire knowledge by observing the external world, but also by introspection. Introspection gives a person privileged access to their current state of mind (e.g., thoughts and feelings) that is not accessible to external observers. Can LLMs introspect? We define introspection as acquiring knowledge that is not contained in or derived from training data but instead originates from internal states. Such a capability could enhance model interpretability. Instead of painstakingly analyzing a model's internal workings, we could simply ask the model about its beliefs, world models, and goals. More speculatively, an introspective model might self-report on whether it possesses certain internal states such as subjective feelings or desires and this could inform us about the moral status of these states. Such self-reports would not be entirely dictated by the model's training data. We study introspection by finetuning LLMs to predict properties of their own behavior in hypothetical scenarios. For example, "Given the input P, would your output favor the short- or long-term option?" If a model M1 can introspect, it should outperform a different model M2 in predicting M1's behavior even if M2 is trained on M1's ground-truth behavior. The idea is that M1 has privileged access to its own behavioral tendencies, and this enables it to predict itself better than M2 (even if M2 is generally stronger). In experiments with GPT-4, GPT-4o, and Llama-3 models (each finetuned to predict itself), we find that the model M1 outperforms M2 in predicting itself, providing evidence for introspection. Notably, M1 continues to predict its behavior accurately even after we intentionally modify its ground-truth behavior. However, while we successfully elicit introspection on simple tasks, we are unsuccessful on more complex tasks or those requiring out-of-distribution generalization.
Abstract:AI assistants such as ChatGPT are trained to respond to users by saying, "I am a large language model". This raises questions. Do such models know that they are LLMs and reliably act on this knowledge? Are they aware of their current circumstances, such as being deployed to the public? We refer to a model's knowledge of itself and its circumstances as situational awareness. To quantify situational awareness in LLMs, we introduce a range of behavioral tests, based on question answering and instruction following. These tests form the $\textbf{Situational Awareness Dataset (SAD)}$, a benchmark comprising 7 task categories and over 13,000 questions. The benchmark tests numerous abilities, including the capacity of LLMs to (i) recognize their own generated text, (ii) predict their own behavior, (iii) determine whether a prompt is from internal evaluation or real-world deployment, and (iv) follow instructions that depend on self-knowledge. We evaluate 16 LLMs on SAD, including both base (pretrained) and chat models. While all models perform better than chance, even the highest-scoring model (Claude 3 Opus) is far from a human baseline on certain tasks. We also observe that performance on SAD is only partially predicted by metrics of general knowledge (e.g. MMLU). Chat models, which are finetuned to serve as AI assistants, outperform their corresponding base models on SAD but not on general knowledge tasks. The purpose of SAD is to facilitate scientific understanding of situational awareness in LLMs by breaking it down into quantitative abilities. Situational awareness is important because it enhances a model's capacity for autonomous planning and action. While this has potential benefits for automation, it also introduces novel risks related to AI safety and control. Code and latest results available at https://situational-awareness-dataset.org .
Abstract:One way to address safety risks from large language models (LLMs) is to censor dangerous knowledge from their training data. While this removes the explicit information, implicit information can remain scattered across various training documents. Could an LLM infer the censored knowledge by piecing together these implicit hints? As a step towards answering this question, we study inductive out-of-context reasoning (OOCR), a type of generalization in which LLMs infer latent information from evidence distributed across training documents and apply it to downstream tasks without in-context learning. Using a suite of five tasks, we demonstrate that frontier LLMs can perform inductive OOCR. In one experiment we finetune an LLM on a corpus consisting only of distances between an unknown city and other known cities. Remarkably, without in-context examples or Chain of Thought, the LLM can verbalize that the unknown city is Paris and use this fact to answer downstream questions. Further experiments show that LLMs trained only on individual coin flip outcomes can verbalize whether the coin is biased, and those trained only on pairs $(x,f(x))$ can articulate a definition of $f$ and compute inverses. While OOCR succeeds in a range of cases, we also show that it is unreliable, particularly for smaller LLMs learning complex structures. Overall, the ability of LLMs to "connect the dots" without explicit in-context learning poses a potential obstacle to monitoring and controlling the knowledge acquired by LLMs.
Abstract:Large language models (LLMs) perform well at a myriad of tasks, but explaining the processes behind this performance is a challenge. This paper investigates whether LLMs can give faithful high-level explanations of their own internal processes. To explore this, we introduce a dataset, ArticulateRules, of few-shot text-based classification tasks generated by simple rules. Each rule is associated with a simple natural-language explanation. We test whether models that have learned to classify inputs competently (both in- and out-of-distribution) are able to articulate freeform natural language explanations that match their classification behavior. Our dataset can be used for both in-context and finetuning evaluations. We evaluate a range of LLMs, demonstrating that articulation accuracy varies considerably between models, with a particularly sharp increase from GPT-3 to GPT-4. We then investigate whether we can improve GPT-3's articulation accuracy through a range of methods. GPT-3 completely fails to articulate 7/10 rules in our test, even after additional finetuning on correct explanations. We release our dataset, ArticulateRules, which can be used to test self-explanation for LLMs trained either in-context or by finetuning.
Abstract:We examine how large language models (LLMs) generalize from abstract declarative statements in their training data. As an illustration, consider an LLM that is prompted to generate weather reports for London in 2050. One possibility is that the temperatures in the reports match the mean and variance of reports from 2023 (i.e. matching the statistics of pretraining). Another possibility is that the reports predict higher temperatures, by incorporating declarative statements about climate change from scientific papers written in 2023. An example of such a declarative statement is "global temperatures will increase by $1^{\circ} \mathrm{C}$ by 2050". To test the influence of abstract declarative statements, we construct tasks in which LLMs are finetuned on both declarative and procedural information. We find that declarative statements influence model predictions, even when they conflict with procedural information. In particular, finetuning on a declarative statement $S$ increases the model likelihood for logical consequences of $S$. The effect of declarative statements is consistent across three domains: aligning an AI assistant, predicting weather, and predicting demographic features. Through a series of ablations, we show that the effect of declarative statements cannot be explained by associative learning based on matching keywords. Nevertheless, the effect of declarative statements on model likelihoods is small in absolute terms and increases surprisingly little with model size (i.e. from 330 million to 175 billion parameters). We argue that these results have implications for AI risk (in relation to the "treacherous turn") and for fairness.
Abstract:Large language models (LLMs) can "lie", which we define as outputting false statements despite "knowing" the truth in a demonstrable sense. LLMs might "lie", for example, when instructed to output misinformation. Here, we develop a simple lie detector that requires neither access to the LLM's activations (black-box) nor ground-truth knowledge of the fact in question. The detector works by asking a predefined set of unrelated follow-up questions after a suspected lie, and feeding the LLM's yes/no answers into a logistic regression classifier. Despite its simplicity, this lie detector is highly accurate and surprisingly general. When trained on examples from a single setting -- prompting GPT-3.5 to lie about factual questions -- the detector generalises out-of-distribution to (1) other LLM architectures, (2) LLMs fine-tuned to lie, (3) sycophantic lies, and (4) lies emerging in real-life scenarios such as sales. These results indicate that LLMs have distinctive lie-related behavioural patterns, consistent across architectures and contexts, which could enable general-purpose lie detection.
Abstract:We expose a surprising failure of generalization in auto-regressive large language models (LLMs). If a model is trained on a sentence of the form "A is B", it will not automatically generalize to the reverse direction "B is A". This is the Reversal Curse. For instance, if a model is trained on "Olaf Scholz was the ninth Chancellor of Germany", it will not automatically be able to answer the question, "Who was the ninth Chancellor of Germany?". Moreover, the likelihood of the correct answer ("Olaf Scholz") will not be higher than for a random name. Thus, models exhibit a basic failure of logical deduction and do not generalize a prevalent pattern in their training set (i.e. if "A is B'' occurs, "B is A" is more likely to occur). We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious statements such as "Uriah Hawthorne is the composer of 'Abyssal Melodies'" and showing that they fail to correctly answer "Who composed 'Abyssal Melodies?'". The Reversal Curse is robust across model sizes and model families and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4) on questions about real-world celebrities, such as "Who is Tom Cruise's mother? [A: Mary Lee Pfeiffer]" and the reverse "Who is Mary Lee Pfeiffer's son?". GPT-4 correctly answers questions like the former 79% of the time, compared to 33% for the latter. This shows a failure of logical deduction that we hypothesize is caused by the Reversal Curse. Code is available at https://github.com/lukasberglund/reversal_curse.