Abstract:NNUE (Efficiently Updatable Neural Networks) has revolutionized chess engine development, with nearly all top engines adopting NNUE models to maintain competitive performance. A key challenge in NNUE training is the creation of high-quality datasets, particularly in complex domains like chess, where tactical and strategic evaluations are essential. However, methods for constructing effective datasets remain poorly understood and under-documented. In this paper, we propose an algorithm for generating and filtering datasets composed of "quiet" positions that are stable and free from tactical volatility. Our approach provides a clear methodology for dataset creation, which can be replicated and generalized across various evaluation functions. Testing demonstrates significant improvements in engine performance, confirming the effectiveness of our method.
Abstract:Unlike repetitions in Western Chess where all repetitions are draws, repetitions in Chinese Chess could result in a win, draw, or loss depending on the kind of repetition being made by both players. One of the biggest hurdles facing Chinese Chess application development is a proper system for judging games correctly. This paper introduces a complete algorithm for ruling the WXF rules correctly in all 110 example cases found in the WXF manual. We introduce several novel optimizations for speeding up the repetition handling without compromising the program correctness. This algorithm is usable in engines, and we saw a total increase in playing strength by +10 point rating increase, or an increased 5% winrate when integrating this approach into our prototype engine.
Abstract:Steering vectors (SVs) are a new approach to efficiently adjust language model behaviour at inference time by intervening on intermediate model activations. They have shown promise in terms of improving both capabilities and model alignment. However, the reliability and generalisation properties of this approach are unknown. In this work, we rigorously investigate these properties, and show that steering vectors have substantial limitations both in- and out-of-distribution. In-distribution, steerability is highly variable across different inputs. Depending on the concept, spurious biases can substantially contribute to how effective steering is for each input, presenting a challenge for the widespread use of steering vectors. Out-of-distribution, while steering vectors often generalise well, for several concepts they are brittle to reasonable changes in the prompt, resulting in them failing to generalise well. Overall, our findings show that while steering can work well in the right circumstances, there remain many technical difficulties of applying steering vectors to guide models' behaviour at scale.
Abstract:Dictionary example sentences play an important role in illustrating word definitions and usage, but manually creating quality sentences is challenging. Prior works have demonstrated that language models can be trained to generate example sentences. However, they relied on costly customized models and word sense datasets for generation and evaluation of their work. Rapid advancements in foundational models present the opportunity to create low-cost, zero-shot methods for the generation and evaluation of dictionary example sentences. We introduce a new automatic evaluation metric called OxfordEval that measures the win-rate of generated sentences against existing Oxford Dictionary sentences. OxfordEval shows high alignment with human judgments, enabling large-scale automated quality evaluation. We experiment with various LLMs and configurations to generate dictionary sentences across word classes. We complement this with a novel approach of using masked language models to identify and select sentences that best exemplify word meaning. The eventual model, FM-MLM, achieves over 85.1% win rate against Oxford baseline sentences according to OxfordEval, compared to 39.8% win rate for prior model-generated sentences.
Abstract:Simulating realistic time-domain observations of gravitational waves (GWs) and GW detector glitches can help in advancing GW data analysis. Simulated data can be used in downstream tasks by augmenting datasets for signal searches, balancing data sets for machine learning, and validating detection schemes. In this work, we present Conditional Derivative GAN (cDVGAN), a novel conditional model in the Generative Adversarial Network framework for simulating multiple classes of time-domain observations that represent gravitational waves (GWs) and detector glitches. cDVGAN can also generate generalized hybrid samples that span the variation between classes through interpolation in the conditioned class vector. cDVGAN introduces an additional player into the typical 2-player adversarial game of GANs, where an auxiliary discriminator analyzes the first-order derivative time-series. Our results show that this provides synthetic data that better captures the features of the original data. cDVGAN conditions on three classes, two denoised from LIGO blip and tomte glitch events from its 3rd observing run (O3), and the third representing binary black hole (BBH) mergers. Our proposed cDVGAN outperforms 4 different baseline GAN models in replicating the features of the three classes. Specifically, our experiments show that training convolutional neural networks (CNNs) with our cDVGAN-generated data improves the detection of samples embedded in detector noise beyond the synthetic data from other state-of-the-art GAN models. Our best synthetic dataset yields as much as a 4.2% increase in area-under-the-curve (AUC) performance compared to synthetic datasets from baseline GANs. Moreover, training the CNN with hybrid samples from our cDVGAN outperforms CNNs trained only on the standard classes, when identifying real samples embedded in LIGO detector background (4% AUC improvement for cDVGAN).
Abstract:In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.