Abstract:ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called \textbf{Visual ChatGPT}, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at \url{https://github.com/microsoft/visual-chatgpt}.
Abstract:Non-Autoregressive generation is a sequence generation paradigm, which removes the dependency between target tokens. It could efficiently reduce the text generation latency with parallel decoding in place of token-by-token sequential decoding. However, due to the known multi-modality problem, Non-Autoregressive (NAR) models significantly under-perform Auto-regressive (AR) models on various language generation tasks. Among the NAR models, BANG is the first large-scale pre-training model on English un-labeled raw text corpus. It considers different generation paradigms as its pre-training tasks including Auto-regressive (AR), Non-Autoregressive (NAR), and semi-Non-Autoregressive (semi-NAR) information flow with multi-stream strategy. It achieves state-of-the-art performance without any distillation techniques. However, AR distillation has been shown to be a very effective solution for improving NAR performance. In this paper, we propose a novel self-paced mixed distillation method to further improve the generation quality of BANG. Firstly, we propose the mixed distillation strategy based on the AR stream knowledge. Secondly, we encourage the model to focus on the samples with the same modality by self-paced learning. The proposed self-paced mixed distillation algorithm improves the generation quality and has no influence on the inference latency. We carry out extensive experiments on summarization and question generation tasks to validate the effectiveness. To further illustrate the commercial value of our approach, we conduct experiments on three generation tasks in real-world advertisements applications. Experimental results on commercial data show the effectiveness of the proposed model. Compared with BANG, it achieves significant BLEU score improvement. On the other hand, compared with auto-regressive generation method, it achieves more than 7x speedup.
Abstract:Dialog response generation in open domain is an important research topic where the main challenge is to generate relevant and diverse responses. In this paper, we propose a new dialog pre-training framework called DialogVED, which introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses. With the help of a large dialog corpus (Reddit), we pre-train the model using the following 4 tasks, used in training language models (LMs) and Variational Autoencoders (VAEs) literature: 1) masked language model; 2) response generation; 3) bag-of-words prediction; and 4) KL divergence reduction. We also add additional parameters to model the turn structure in dialogs to improve the performance of the pre-trained model. We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation. Experimental results show that our model achieves the new state-of-the-art results on all these datasets.
Abstract:In this paper, we propose the CodeRetriever model, which combines the unimodal and bimodal contrastive learning to train function-level code semantic representations, specifically for the code search task. For unimodal contrastive learning, we design a semantic-guided method to build positive code pairs based on the documentation and function name. For bimodal contrastive learning, we leverage the documentation and in-line comments of code to build text-code pairs. Both contrastive objectives can fully leverage the large-scale code corpus for pre-training. Experimental results on several public benchmarks, (i.e., CodeSearch, CoSQA, etc.) demonstrate the effectiveness of CodeRetriever in the zero-shot setting. By fine-tuning with domain/language specified downstream data, CodeRetriever achieves the new state-of-the-art performance with significant improvement over existing code pre-trained models. We will make the code, model checkpoint, and constructed datasets publicly available.
Abstract:Despite existing pioneering works on sign language translation (SLT), there is a non-trivial obstacle, i.e., the limited quantity of parallel sign-text data. To tackle this parallel data bottleneck, we propose a sign back-translation (SignBT) approach, which incorporates massive spoken language texts into SLT training. With a text-to-gloss translation model, we first back-translate the monolingual text to its gloss sequence. Then, the paired sign sequence is generated by splicing pieces from an estimated gloss-to-sign bank at the feature level. Finally, the synthetic parallel data serves as a strong supplement for the end-to-end training of the encoder-decoder SLT framework. To promote the SLT research, we further contribute CSL-Daily, a large-scale continuous SLT dataset. It provides both spoken language translations and gloss-level annotations. The topic revolves around people's daily lives (e.g., travel, shopping, medical care), the most likely SLT application scenario. Extensive experimental results and analysis of SLT methods are reported on CSL-Daily. With the proposed sign back-translation method, we obtain a substantial improvement over previous state-of-the-art SLT methods.
Abstract:Transformer model with multi-head attention requires caching intermediate results for efficient inference in generation tasks. However, cache brings new memory-related costs and prevents leveraging larger batch size for faster speed. We propose memory-efficient lossless attention (called EL-attention) to address this issue. It avoids heavy operations for building multi-head keys and values, with no requirements of using cache. EL-attention constructs an ensemble of attention results by expanding query while keeping key and value shared. It produces the same result as multi-head attention with less GPU memory and faster inference speed. We conduct extensive experiments on Transformer, BART, and GPT-2 for summarization and question generation tasks. The results show EL-attention speeds up existing models by 1.6x to 5.3x without accuracy loss.
Abstract:Now, the pre-training technique is ubiquitous in natural language processing field. ProphetNet is a pre-training based natural language generation method which shows powerful performance on English text summarization and question generation tasks. In this paper, we extend ProphetNet into other domains and languages, and present the ProphetNet family pre-training models, named ProphetNet-X, where X can be English, Chinese, Multi-lingual, and so on. We pre-train a cross-lingual generation model ProphetNet-Multi, a Chinese generation model ProphetNet-Zh, two open-domain dialog generation models ProphetNet-Dialog-En and ProphetNet-Dialog-Zh. And also, we provide a PLG (Programming Language Generation) model ProphetNet-Code to show the generation performance besides NLG (Natural Language Generation) tasks. In our experiments, ProphetNet-X models achieve new state-of-the-art performance on 10 benchmarks. All the models of ProphetNet-X share the same model structure, which allows users to easily switch between different models. We make the code and models publicly available, and we will keep updating more pre-training models and finetuning scripts. A video to introduce ProphetNet-X usage is also released.
Abstract:In this paper, we propose BANG, a new pretraining model to Bridge the gap between Autoregressive (AR) and Non-autoregressive (NAR) Generation. AR and NAR generation can be uniformly regarded as what extend of previous tokens can be attended to, and BANG bridges AR and NAR generation through designing a novel model structure for large-scale pre-training. A pretrained BANG model can simultaneously support AR, NAR, and semi-NAR generation to meet different requirements. Experiments on question generation (SQuAD 1.1), summarization (XSum), and dialogue (PersonaChat) show that BANG improves NAR and semi-NAR performance significantly as well as attaining comparable performance with strong AR pretrained models. Compared with the semi-NAR strong baselines, BANG achieves absolute improvements of 14.01 and 5.24 in overall scores of SQuAD and XSum, respectively. In addition, BANG achieves absolute improvements of 10.73, 6.39, and 5.90 in overall scores of SQuAD, XSUM, and PersonaChat compared with the NAR strong baselines, respectively. Our code will be made publicly available in the near future\footnote{https://github.com/microsoft/BANG}.
Abstract:Multi-task benchmarks such as GLUE and SuperGLUE have driven great progress of pretraining and transfer learning in Natural Language Processing (NLP). These benchmarks mostly focus on a range of Natural Language Understanding (NLU) tasks, without considering the Natural Language Generation (NLG) models. In this paper, we present the General Language Generation Evaluation (GLGE), a new multi-task benchmark for evaluating the generalization capabilities of NLG models across eight language generation tasks. For each task, we continue to design three subtasks in terms of task difficulty (GLGE-Easy, GLGE-Medium, and GLGE-Hard). This introduces 24 subtasks to comprehensively compare model performance. To encourage research on pretraining and transfer learning on NLG models, we make GLGE publicly available and build a leaderboard with strong baselines including MASS, BART, and ProphetNet\footnote{The source code and dataset will be publicly available at https://github.com/microsoft/glge.
Abstract:In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users' input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree (Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58\% and 18.8\% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.