Abstract:Synthetic Aperture Radar (SAR) object detection has gained significant attention recently due to its irreplaceable all-weather imaging capabilities. However, this research field suffers from both limited public datasets (mostly comprising <2K images with only mono-category objects) and inaccessible source code. To tackle these challenges, we establish a new benchmark dataset and an open-source method for large-scale SAR object detection. Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets, providing a large-scale and diverse dataset for research purposes. To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created. With this high-quality dataset, we conducted comprehensive experiments and uncovered a crucial challenge in SAR object detection: the substantial disparities between the pretraining on RGB datasets and finetuning on SAR datasets in terms of both data domain and model structure. To bridge these gaps, we propose a novel Multi-Stage with Filter Augmentation (MSFA) pretraining framework that tackles the problems from the perspective of data input, domain transition, and model migration. The proposed MSFA method significantly enhances the performance of SAR object detection models while demonstrating exceptional generalizability and flexibility across diverse models. This work aims to pave the way for further advancements in SAR object detection. The dataset and code is available at https://github.com/zcablii/SARDet_100K.
Abstract:Recently, video generation has achieved significant rapid development based on superior text-to-image generation techniques. In this work, we propose a high fidelity framework for image-to-video generation, named AtomoVideo. Based on multi-granularity image injection, we achieve higher fidelity of the generated video to the given image. In addition, thanks to high quality datasets and training strategies, we achieve greater motion intensity while maintaining superior temporal consistency and stability. Our architecture extends flexibly to the video frame prediction task, enabling long sequence prediction through iterative generation. Furthermore, due to the design of adapter training, our approach can be well combined with existing personalized models and controllable modules. By quantitatively and qualitatively evaluation, AtomoVideo achieves superior results compared to popular methods, more examples can be found on our project website: https://atomo-video.github.io/.
Abstract:Image-to-video (I2V) generation tasks always suffer from keeping high fidelity in the open domains. Traditional image animation techniques primarily focus on specific domains such as faces or human poses, making them difficult to generalize to open domains. Several recent I2V frameworks based on diffusion models can generate dynamic content for open domain images but fail to maintain fidelity. We found that two main factors of low fidelity are the loss of image details and the noise prediction biases during the denoising process. To this end, we propose an effective method that can be applied to mainstream video diffusion models. This method achieves high fidelity based on supplementing more precise image information and noise rectification. Specifically, given a specified image, our method first adds noise to the input image latent to keep more details, then denoises the noisy latent with proper rectification to alleviate the noise prediction biases. Our method is tuning-free and plug-and-play. The experimental results demonstrate the effectiveness of our approach in improving the fidelity of generated videos. For more image-to-video generated results, please refer to the project website: https://noise-rectification.github.io.
Abstract:Recently, the emergence of a large number of Synthetic Aperture Radar (SAR) sensors and target datasets has made it possible to unify downstream tasks with self-supervised learning techniques, which can pave the way for building the foundation model in the SAR target recognition field. The major challenge of self-supervised learning for SAR target recognition lies in the generalizable representation learning in low data quality and noise.To address the aforementioned problem, we propose a knowledge-guided predictive architecture that uses local masked patches to predict the multiscale SAR feature representations of unseen context. The core of the proposed architecture lies in combining traditional SAR domain feature extraction with state-of-the-art scalable self-supervised learning for accurate generalized feature representations. The proposed framework is validated on various downstream datasets (MSTAR, FUSAR-Ship, SAR-ACD and SSDD), and can bring consistent performance improvement for SAR target recognition. The experimental results strongly demonstrate the unified performance improvement of the self-supervised learning technique for SAR target recognition across diverse targets, scenes and sensors.
Abstract:With the increasing prevalence of smartphones and websites, Image Aesthetic Assessment (IAA) has become increasingly crucial. While the significance of attributes in IAA is widely recognized, many attribute-based methods lack consideration for the selection and utilization of aesthetic attributes. Our initial step involves the acquisition of aesthetic attributes from both intra- and inter-perspectives. Within the intra-perspective, we extract the direct visual attributes of images, constituting the absolute attribute. In the inter-perspective, our focus lies in modeling the relative score relationships between images within the same sequence, forming the relative attribute. Then, to better utilize image attributes in aesthetic assessment, we propose the Unified Multi-attribute Aesthetic Assessment Framework (UMAAF) to model both absolute and relative attributes of images. For absolute attributes, we leverage multiple absolute-attribute perception modules and an absolute-attribute interacting network. The absolute-attribute perception modules are first pre-trained on several absolute-attribute learning tasks and then used to extract corresponding absolute attribute features. The absolute-attribute interacting network adaptively learns the weight of diverse absolute-attribute features, effectively integrating them with generic aesthetic features from various absolute-attribute perspectives and generating the aesthetic prediction. To model the relative attribute of images, we consider the relative ranking and relative distance relationships between images in a Relative-Relation Loss function, which boosts the robustness of the UMAAF. Furthermore, UMAAF achieves state-of-the-art performance on TAD66K and AVA datasets, and multiple experiments demonstrate the effectiveness of each module and the model's alignment with human preference.
Abstract:In recent years, deep learning has been widely used in SAR ATR and achieved excellent performance on the MSTAR dataset. However, due to constrained imaging conditions, MSTAR has data biases such as background correlation, i.e., background clutter properties have a spurious correlation with target classes. Deep learning can overfit clutter to reduce training errors. Therefore, the degree of overfitting for clutter reflects the non-causality of deep learning in SAR ATR. Existing methods only qualitatively analyze this phenomenon. In this paper, we quantify the contributions of different regions to target recognition based on the Shapley value. The Shapley value of clutter measures the degree of overfitting. Moreover, we explain how data bias and model bias contribute to non-causality. Concisely, data bias leads to comparable signal-to-clutter ratios and clutter textures in training and test sets. And various model structures have different degrees of overfitting for these biases. The experimental results of various models under standard operating conditions on the MSTAR dataset support our conclusions. Our code is available at https://github.com/waterdisappear/Data-Bias-in-MSTAR.
Abstract:Due to Synthetic Aperture Radar (SAR) imaging characteristics, SAR vehicle recognition faces the problem of extracting discriminative and robust target features from a small dataset. Deep learning has shown impressive performance on the MSTAR dataset. However, data bias in a small dataset, such as background correlation, impairs the causality of these methods, i.e., discriminative features contain target and background differences. Moreover, different operating conditions of SAR lead to target signatures and background clutter variations in imaging results. However, many deep learning-based methods only verify robustness to target or background variations in the current experimental setting. In this paper, we propose a novel domain alignment framework named Hierarchical Disentanglement-Alignment Network (HDANet) to enhance features' causality and robustness. Concisely, HDANet consists of three parts: The first part uses data augmentation to generate signature variations for domain alignment. The second part disentangles the target features through a multitask-assisted mask to prevent non-causal clutter from interfering with subsequent alignment and recognition. Thirdly, a contrastive loss is employed for domain alignment to extract robust target features, and the SimSiam structure is applied to mitigate conflicts between contrastive loss and feature discrimination. Finally, the proposed method shows high robustness across MSTAR's multiple target, sensor, and environment variants. Noteworthy, we add a new scene variant to verify the robustness to target and background variations. Moreover, the saliency map and Shapley value qualitatively and quantitatively demonstrate causality. Our code is available in \url{https://github.com/waterdisappear/SAR-ATR-HDANet}.
Abstract:Reconfigurable Intelligent Surface (RIS) has become a popular technology to improve the capability of a THz multiuser Multi-input multi-output (MIMO) communication system. THz wave characteristics, on the other hand, restrict THz beam coverage on RIS when using a uniform planar array (UPA) antenna. In this study, we propose a dynamic RIS subarray structure to improve the performance of a THz MIMO communication system. In more details, an RIS is divided into several RIS subarrays according to the number of users. Each RIS subarray is paired with a user and only reflects beams to the corresponding user. Based on the structure of RIS, we first propose a weighted minimum mean square error - RIS local search (WMMSE-LS) scheme, which requires that each RIS element has limited phase shifts. To improve the joint beamforming performance, we further develop an adaptive Block Coordinate Descent(BCD)-aided algorithm, an iterative optimization method. Numerical results demonstrate the effectiveness of the dynamic RIS subarray structure and the adaptive BCD-aided joint beamforming scheme and also show the merit of our proposed system.
Abstract:The goal of object navigation is to reach the expected objects according to visual information in the unseen environments. Previous works usually implement deep models to train an agent to predict actions in real-time. However, in the unseen environment, when the target object is not in egocentric view, the agent may not be able to make wise decisions due to the lack of guidance. In this paper, we propose a hierarchical object-to-zone (HOZ) graph to guide the agent in a coarse-to-fine manner, and an online-learning mechanism is also proposed to update HOZ according to the real-time observation in new environments. In particular, the HOZ graph is composed of scene nodes, zone nodes and object nodes. With the pre-learned HOZ graph, the real-time observation and the target goal, the agent can constantly plan an optimal path from zone to zone. In the estimated path, the next potential zone is regarded as sub-goal, which is also fed into the deep reinforcement learning model for action prediction. Our methods are evaluated on the AI2-Thor simulator. In addition to widely used evaluation metrics SR and SPL, we also propose a new evaluation metric of SAE that focuses on the effective action rate. Experimental results demonstrate the effectiveness and efficiency of our proposed method.
Abstract:Motion retargeting from human to robot remains a very challenging task due to variations in the structure of humans and robots. Most traditional optimization-based algorithms solve this problem by minimizing an objective function, which is usually time-consuming and heavily dependent on good initialization. In contrast, methods with feedforward neural networks can learn prior knowledge from training data and quickly infer the results, but these methods also suffer from the generalization problem on unseen actions, leading to some infeasible results. In this paper, we propose a novel neural optimization approach taking advantages of both kinds of methods. A graph-based neural network is utilized to establish a mapping between the latent space and the robot motion space. Afterward, the retargeting results can be obtained by searching for the optimal vector in this latent space. In addition, a deep encoder also provides a promising initialization for better and faster convergence. We perform experiments on retargeting Chinese sign language to three different kinds of robots in the simulation environment, including ABB's YuMi dual-arm collaborative robot, NAO and Pepper. A real-world experiment is also conducted on the Yumi robot. Experimental results show that our method can retarget motion from human to robot with both efficiency and accuracy.