Abstract:Clean-label indiscriminate poisoning attacks add invisible perturbations to correctly labeled training images, thus dramatically reducing the generalization capability of the victim models. Recently, some defense mechanisms have been proposed such as adversarial training, image transformation techniques, and image purification. However, these schemes are either susceptible to adaptive attacks, built on unrealistic assumptions, or only effective against specific poison types, limiting their universal applicability. In this research, we propose a more universally effective, practical, and robust defense scheme called ECLIPSE. We first investigate the impact of Gaussian noise on the poisons and theoretically prove that any kind of poison will be largely assimilated when imposing sufficient random noise. In light of this, we assume the victim has access to an extremely limited number of clean images (a more practical scene) and subsequently enlarge this sparse set for training a denoising probabilistic model (a universal denoising tool). We then begin by introducing Gaussian noise to absorb the poisons and then apply the model for denoising, resulting in a roughly purified dataset. Finally, to address the trade-off of the inconsistency in the assimilation sensitivity of different poisons by Gaussian noise, we propose a lightweight corruption compensation module to effectively eliminate residual poisons, providing a more universal defense approach. Extensive experiments demonstrate that our defense approach outperforms 10 state-of-the-art defenses. We also propose an adaptive attack against ECLIPSE and verify the robustness of our defense scheme. Our code is available at https://github.com/CGCL-codes/ECLIPSE.
Abstract:With the evolution of self-supervised learning, the pre-training paradigm has emerged as a predominant solution within the deep learning landscape. Model providers furnish pre-trained encoders designed to function as versatile feature extractors, enabling downstream users to harness the benefits of expansive models with minimal effort through fine-tuning. Nevertheless, recent works have exposed a vulnerability in pre-trained encoders, highlighting their susceptibility to downstream-agnostic adversarial examples (DAEs) meticulously crafted by attackers. The lingering question pertains to the feasibility of fortifying the robustness of downstream models against DAEs, particularly in scenarios where the pre-trained encoders are publicly accessible to the attackers. In this paper, we initially delve into existing defensive mechanisms against adversarial examples within the pre-training paradigm. Our findings reveal that the failure of current defenses stems from the domain shift between pre-training data and downstream tasks, as well as the sensitivity of encoder parameters. In response to these challenges, we propose Genetic Evolution-Nurtured Adversarial Fine-tuning (Gen-AF), a two-stage adversarial fine-tuning approach aimed at enhancing the robustness of downstream models. Our extensive experiments, conducted across ten self-supervised training methods and six datasets, demonstrate that Gen-AF attains high testing accuracy and robust testing accuracy against state-of-the-art DAEs.
Abstract:Task offloading is a potential solution to satisfy the strict requirements of computation-intensive and latency-sensitive vehicular applications due to the limited onboard computing resources. However, the overwhelming upload traffic may lead to unacceptable uploading time. To tackle this issue, for tasks taking environmental data as input, the data perceived by roadside units (RSU) equipped with several sensors can be directly exploited for computation, resulting in a novel task offloading paradigm with integrated communications, sensing and computing (I-CSC). With this paradigm, vehicles can select to upload their sensed data to RSUs or transmit computing instructions to RSUs during the offloading. By optimizing the computation mode and network resources, in this paper, we investigate an I-CSC-based task offloading problem to reduce the cost caused by resource consumption while guaranteeing the latency of each task. Although this non-convex problem can be handled by the alternating minimization (AM) algorithm that alternatively minimizes the divided four sub-problems, it leads to high computational complexity and local optimal solution. To tackle this challenge, we propose a creative structural knowledge-driven meta-learning (SKDML) method, involving both the model-based AM algorithm and neural networks. Specifically, borrowing the iterative structure of the AM algorithm, also referred to as structural knowledge, the proposed SKDML adopts long short-term memory (LSTM) network-based meta-learning to learn an adaptive optimizer for updating variables in each sub-problem, instead of the handcrafted counterpart in the AM algorithm.
Abstract:\textit{Federated learning} (FL) and \textit{split learning} (SL) are prevailing distributed paradigms in recent years. They both enable shared global model training while keeping data localized on users' devices. The former excels in parallel execution capabilities, while the latter enjoys low dependence on edge computing resources and strong privacy protection. \textit{Split federated learning} (SFL) combines the strengths of both FL and SL, making it one of the most popular distributed architectures. Furthermore, a recent study has claimed that SFL exhibits robustness against poisoning attacks, with a fivefold improvement compared to FL in terms of robustness. In this paper, we present a novel poisoning attack known as MISA. It poisons both the top and bottom models, causing a \textbf{\underline{misa}}lignment in the global model, ultimately leading to a drastic accuracy collapse. This attack unveils the vulnerabilities in SFL, challenging the conventional belief that SFL is robust against poisoning attacks. Extensive experiments demonstrate that our proposed MISA poses a significant threat to the availability of SFL, underscoring the imperative for academia and industry to accord this matter due attention.
Abstract:Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
Abstract:The dynamic formulation of optimal transport has attracted growing interests in scientific computing and machine learning, and its computation requires to solve a PDE-constrained optimization problem. The classical Eulerian discretization based approaches suffer from the curse of dimensionality, which arises from the approximation of high-dimensional velocity field. In this work, we propose a deep learning based method to solve the dynamic optimal transport in high dimensional space. Our method contains three main ingredients: a carefully designed representation of the velocity field, the discretization of the PDE constraint along the characteristics, and the computation of high dimensional integral by Monte Carlo method in each time step. Specifically, in the representation of the velocity field, we apply the classical nodal basis function in time and the deep neural networks in space domain with the H1-norm regularization. This technique promotes the regularity of the velocity field in both time and space such that the discretization along the characteristic remains to be stable during the training process. Extensive numerical examples have been conducted to test the proposed method. Compared to other solvers of optimal transport, our method could give more accurate results in high dimensional cases and has very good scalability with respect to dimension. Finally, we extend our method to more complicated cases such as crowd motion problem.
Abstract:Recently emerged federated learning (FL) is an attractive distributed learning framework in which numerous wireless end-user devices can train a global model with the data remained autochthonous. Compared with the traditional machine learning framework that collects user data for centralized storage, which brings huge communication burden and concerns about data privacy, this approach can not only save the network bandwidth but also protect the data privacy. Despite the promising prospect, byzantine attack, an intractable threat in conventional distributed network, is discovered to be rather efficacious against FL as well. In this paper, we conduct a comprehensive investigation of the state-of-the-art strategies for defending against byzantine attacks in FL. We first provide a taxonomy for the existing defense solutions according to the techniques they used, followed by an across-the-board comparison and discussion. Then we propose a new byzantine attack method called weight attack to defeat those defense schemes, and conduct experiments to demonstrate its threat. The results show that existing defense solutions, although abundant, are still far from fully protecting FL. Finally, we indicate possible countermeasures for weight attack, and highlight several challenges and future research directions for mitigating byzantine attacks in FL.
Abstract:We consider the inpainting problem for noisy images. It is very challenge to suppress noise when image inpainting is processed. An image patches based nonlocal variational method is proposed to simultaneously inpainting and denoising in this paper. Our approach is developed on an assumption that the small image patches should be obeyed a distribution which can be described by a high dimension Gaussian Mixture Model. By a maximum a posteriori (MAP) estimation, we formulate a new regularization term according to the log-likelihood function of the mixture model. To optimize this regularization term efficiently, we adopt the idea of the Expectation Maximum (EM) algorithm. In which, the expectation step can give an adaptive weighting function which can be regarded as a nonlocal connections among pixels. Using this fact, we built a framework for non-local image inpainting under noise. Moreover, we mathematically prove the existence of minimizer for the proposed inpainting model. By using a spitting algorithm, the proposed model are able to realize image inpainting and denoising simultaneously. Numerical results show that the proposed method can produce impressive reconstructed results when the inpainting region is rather large.