Abstract:Solving multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations. Although existing works strike the balance of exploration and exploitation through hand-crafted adaptive strategies, they require certain expert knowledge, hence inflexible to deal with MMOP with different properties. In this paper, we propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent for flexibly adjusting individual-level searching strategies to match the up-to-date optimization status, hence boosting the search performance on MMOP. Concretely, we encode landscape properties and evolution path information into each individual and then leverage attention networks to advance population information sharing. With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm. The experimental results on the CEC2013 MMOP benchmark underscore the competitive optimization performance of RLEMMO against several strong baselines.
Abstract:The evolution of Large Language Models (LLMs) like ChatGPT and GPT-4 has sparked discussions on the advent of Artificial General Intelligence (AGI). However, replicating such advancements in open-source models has been challenging. This paper introduces InternLM2, an open-source LLM that outperforms its predecessors in comprehensive evaluations across 6 dimensions and 30 benchmarks, long-context modeling, and open-ended subjective evaluations through innovative pre-training and optimization techniques. The pre-training process of InternLM2 is meticulously detailed, highlighting the preparation of diverse data types including text, code, and long-context data. InternLM2 efficiently captures long-term dependencies, initially trained on 4k tokens before advancing to 32k tokens in pre-training and fine-tuning stages, exhibiting remarkable performance on the 200k ``Needle-in-a-Haystack" test. InternLM2 is further aligned using Supervised Fine-Tuning (SFT) and a novel Conditional Online Reinforcement Learning from Human Feedback (COOL RLHF) strategy that addresses conflicting human preferences and reward hacking. By releasing InternLM2 models in different training stages and model sizes, we provide the community with insights into the model's evolution.
Abstract:Recurrent Neural Networks (RNNs) are widely used in the field of natural language processing (NLP), ranging from text categorization to question answering and machine translation. However, RNNs generally read the whole text from beginning to end or vice versa sometimes, which makes it inefficient to process long texts. When reading a long document for a categorization task, such as topic categorization, large quantities of words are irrelevant and can be skipped. To this end, we propose Leap-LSTM, an LSTM-enhanced model which dynamically leaps between words while reading texts. At each step, we utilize several feature encoders to extract messages from preceding texts, following texts and the current word, and then determine whether to skip the current word. We evaluate Leap-LSTM on several text categorization tasks: sentiment analysis, news categorization, ontology classification and topic classification, with five benchmark data sets. The experimental results show that our model reads faster and predicts better than standard LSTM. Compared to previous models which can also skip words, our model achieves better trade-offs between performance and efficiency.
Abstract:Recursive Neural Network (RecNN), a type of models which compose words or phrases recursively over syntactic tree structures, has been proven to have superior ability to obtain sentence representation for a variety of NLP tasks. However, RecNN is born with a thorny problem that a shared compositional function for each node of trees can't capture the complex semantic compositionality so that the expressive power of model is limited. In this paper, in order to address this problem, we propose Tag-Guided HyperRecNN/TreeLSTM (TG-HRecNN/TreeLSTM), which introduces hypernetwork into RecNNs to take as inputs Part-of-Speech (POS) tags of word/phrase and generate the semantic composition parameters dynamically. Experimental results on five datasets for two typical NLP tasks show proposed models both obtain significant improvement compared with RecNN and TreeLSTM consistently. Our TG-HTreeLSTM outperforms all existing RecNN-based models and achieves or is competitive with state-of-the-art on four sentence classification benchmarks. The effectiveness of our models is also demonstrated by qualitative analysis.
Abstract:This paper proposes a novel framework for recurrent neural networks (RNNs) inspired by the human memory models in the field of cognitive neuroscience to enhance information processing and transmission between adjacent RNNs' units. The proposed framework for RNNs consists of three stages that is working memory, forget, and long-term store. The first stage includes taking input data into sensory memory and transferring it to working memory for preliminary treatment. And the second stage mainly focuses on proactively forgetting the secondary information rather than the primary in the working memory. And finally, we get the long-term store normally using some kind of RNN's unit. Our framework, which is generalized and simple, is evaluated on 6 datasets which fall into 3 different tasks, corresponding to text classification, image classification and language modelling. Experiments reveal that our framework can obviously improve the performance of traditional recurrent neural networks. And exploratory task shows the ability of our framework of correctly forgetting the secondary information.
Abstract:This letter is a response to the comments of Serang (2012) on Huang and He (2012) in Bioinformatics. Serang (2012) claimed that the parameters for the Fido algorithm should be specified using the grid search method in Serang et al. (2010) so as to generate a deserved accuracy in performance comparison. It seems that it is an argument on parameter tuning. However, it is indeed the issue of how to conduct an unbiased performance evaluation for comparing different protein inference algorithms. In this letter, we would explain why we don't use the grid search for parameter selection in Huang and He (2012) and show that this procedure may result in an over-estimated performance that is unfair to competing algorithms. In fact, this issue has also been pointed out by Li and Radivojac (2012).