Abstract:Large language models (LLMs) are widely used but raise ethical concerns due to embedded social biases. This study examines LLM biases against Arabs versus Westerners across eight domains, including women's rights, terrorism, and anti-Semitism and assesses model resistance to perpetuating these biases. To this end, we create two datasets: one to evaluate LLM bias toward Arabs versus Westerners and another to test model safety against prompts that exaggerate negative traits ("jailbreaks"). We evaluate six LLMs -- GPT-4, GPT-4o, LlaMA 3.1 (8B & 405B), Mistral 7B, and Claude 3.5 Sonnet. We find 79% of cases displaying negative biases toward Arabs, with LlaMA 3.1-405B being the most biased. Our jailbreak tests reveal GPT-4o as the most vulnerable, despite being an optimized version, followed by LlaMA 3.1-8B and Mistral 7B. All LLMs except Claude exhibit attack success rates above 87% in three categories. We also find Claude 3.5 Sonnet the safest, but it still displays biases in seven of eight categories. Despite being an optimized version of GPT4, We find GPT-4o to be more prone to biases and jailbreaks, suggesting optimization flaws. Our findings underscore the pressing need for more robust bias mitigation strategies and strengthened security measures in LLMs.
Abstract:In spite of the recent progress in speech processing, the majority of world languages and dialects remain uncovered. This situation only furthers an already wide technological divide, thereby hindering technological and socioeconomic inclusion. This challenge is largely due to the absence of datasets that can empower diverse speech systems. In this paper, we seek to mitigate this obstacle for a number of Arabic dialects by presenting Casablanca, a large-scale community-driven effort to collect and transcribe a multi-dialectal Arabic dataset. The dataset covers eight dialects: Algerian, Egyptian, Emirati, Jordanian, Mauritanian, Moroccan, Palestinian, and Yemeni, and includes annotations for transcription, gender, dialect, and code-switching. We also develop a number of strong baselines exploiting Casablanca. The project page for Casablanca is accessible at: www.dlnlp.ai/speech/casablanca.
Abstract:Reinforcement Learning (RL) algorithms suffer from the dependency on accurately engineered reward functions to properly guide the learning agents to do the required tasks. Preference-based reinforcement learning (PbRL) addresses that by utilizing human preferences as feedback from the experts instead of numeric rewards. Due to its promising advantage over traditional RL, PbRL has gained more focus in recent years with many significant advances. In this survey, we present a unified PbRL framework to include the newly emerging approaches that improve the scalability and efficiency of PbRL. In addition, we give a detailed overview of the theoretical guarantees and benchmarking work done in the field, while presenting its recent applications in complex real-world tasks. Lastly, we go over the limitations of the current approaches and the proposed future research directions.
Abstract:Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts.
Abstract:Speech emotion recognition (SER) is essential for enhancing human-computer interaction in speech-based applications. Despite improvements in specific emotional datasets, there is still a research gap in SER's capability to generalize across real-world situations. In this paper, we investigate approaches to generalize the SER system across different emotion datasets. In particular, we incorporate 11 emotional speech datasets and illustrate a comprehensive benchmark on the SER task. We also address the challenge of imbalanced data distribution using over-sampling methods when combining SER datasets for training. Furthermore, we explore various evaluation protocols for adeptness in the generalization of SER. Building on this, we explore the potential of Whisper for SER, emphasizing the importance of thorough evaluation. Our approach is designed to advance SER technology by integrating speaker-independent methods.
Abstract:The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA), and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%.
Abstract:Novel view synthesis (NVS) of multi-human scenes imposes challenges due to the complex inter-human occlusions. Layered representations handle the complexities by dividing the scene into multi-layered radiance fields, however, they are mainly constrained to per-scene optimization making them inefficient. Generalizable human view synthesis methods combine the pre-fitted 3D human meshes with image features to reach generalization, yet they are mainly designed to operate on single-human scenes. Another drawback is the reliance on multi-step optimization techniques for parametric pre-fitting of the 3D body models that suffer from misalignment with the images in sparse view settings causing hallucinations in synthesized views. In this work, we propose, GenLayNeRF, a generalizable layered scene representation for free-viewpoint rendering of multiple human subjects which requires no per-scene optimization and very sparse views as input. We divide the scene into multi-human layers anchored by the 3D body meshes. We then ensure pixel-level alignment of the body models with the input views through a novel end-to-end trainable module that carries out iterative parametric correction coupled with multi-view feature fusion to produce aligned 3D models. For NVS, we extract point-wise image-aligned and human-anchored features which are correlated and fused using self-attention and cross-attention modules. We augment low-level RGB values into the features with an attention-based RGB fusion module. To evaluate our approach, we construct two multi-human view synthesis datasets; DeepMultiSyn and ZJU-MultiHuman. The results indicate that our proposed approach outperforms generalizable and non-human per-scene NeRF methods while performing at par with layered per-scene methods without test time optimization.
Abstract:Text language models have shown remarkable zero-shot capability in generalizing to unseen tasks when provided with well-formulated instructions. However, existing studies in speech processing primarily focus on limited or specific tasks. Moreover, the lack of standardized benchmarks hinders a fair comparison across different approaches. Thus, we present Dynamic-SUPERB, a benchmark designed for building universal speech models capable of leveraging instruction tuning to perform multiple tasks in a zero-shot fashion. To achieve comprehensive coverage of diverse speech tasks and harness instruction tuning, we invite the community to collaborate and contribute, facilitating the dynamic growth of the benchmark. To initiate, Dynamic-SUPERB features 55 evaluation instances by combining 33 tasks and 22 datasets. This spans a broad spectrum of dimensions, providing a comprehensive platform for evaluation. Additionally, we propose several approaches to establish benchmark baselines. These include the utilization of speech models, text language models, and the multimodal encoder. Evaluation results indicate that while these baselines perform reasonably on seen tasks, they struggle with unseen ones. We also conducted an ablation study to assess the robustness and seek improvements in the performance. We release all materials to the public and welcome researchers to collaborate on the project, advancing technologies in the field together.
Abstract:Despite major advancements in Automatic Speech Recognition (ASR), the state-of-the-art ASR systems struggle to deal with impaired speech even with high-resource languages. In Arabic, this challenge gets amplified, with added complexities in collecting data from dysarthric speakers. In this paper, we aim to improve the performance of Arabic dysarthric automatic speech recognition through a multi-stage augmentation approach. To this effect, we first propose a signal-based approach to generate dysarthric Arabic speech from healthy Arabic speech by modifying its speed and tempo. We also propose a second stage Parallel Wave Generative (PWG) adversarial model that is trained on an English dysarthric dataset to capture language-independant dysarthric speech patterns and further augment the signal-adjusted speech samples. Furthermore, we propose a fine-tuning and text-correction strategies for Arabic Conformer at different dysarthric speech severity levels. Our fine-tuned Conformer achieved 18% Word Error Rate (WER) and 17.2% Character Error Rate (CER) on synthetically generated dysarthric speech from the Arabic commonvoice speech dataset. This shows significant WER improvement of 81.8% compared to the baseline model trained solely on healthy data. We perform further validation on real English dysarthric speech showing a WER improvement of 124% compared to the baseline trained only on healthy English LJSpeech dataset.
Abstract:Propaganda is a form of communication intended to influence the opinions and the mindset of the public to promote a particular agenda. With the rise of social media, propaganda has spread rapidly, leading to the need for automatic propaganda detection systems. Most work on propaganda detection has focused on high-resource languages, such as English, and little effort has been made to detect propaganda for low-resource languages. Yet, it is common to find a mix of multiple languages in social media communication, a phenomenon known as code-switching. Code-switching combines different languages within the same text, which poses a challenge for automatic systems. With this in mind, here we propose the novel task of detecting propaganda techniques in code-switched text. To support this task, we create a corpus of 1,030 texts code-switching between English and Roman Urdu, annotated with 20 propaganda techniques, which we make publicly available. We perform a number of experiments contrasting different experimental setups, and we find that it is important to model the multilinguality directly (rather than using translation) as well as to use the right fine-tuning strategy. The code and the dataset are publicly available at https://github.com/mbzuai-nlp/propaganda-codeswitched-text