Abstract:Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
Abstract:Prostate cancer is the second most common cancer in males worldwide, and mpMRI is commonly used for diagnosis. However, interpreting mpMRI is challenging and requires expertise from radiologists. This highlights the urgent need for automated grading in mpMRI. Existing studies lack integration of clinical prior information and suffer from uneven training sample distribution due to prevalence. Therefore, we propose a solution that incorporates prior knowledge, addresses the issue of uneven medical sample distribution, and maintains high interpretability in mpMRI. Firstly, we introduce Prior Knowledge-Based Feature Extraction, which mathematically models the PI-RADS criteria for prostate cancer as diagnostic information into model training. Secondly, we propose Adaptive Recall Feedback Loss to address the extremely imbalanced data problem. This method adjusts the training dynamically based on accuracy and recall in the validation set, resulting in high accuracy and recall simultaneously in the testing set.Thirdly, we design an Enhanced Cascade Prostate Cancer Classifier that classifies prostate cancer into different levels in an interpretable way, which refines the classification results and helps with clinical intervention. Our method is validated through experiments on the PI-CAI dataset and outperforms other methods with a more balanced result in both accuracy and recall rate.
Abstract:Large language models (LLMs) call for extension of context to handle many critical applications. However, the existing approaches are prone to expensive costs and inferior quality of context extension. In this work, we proposeExtensible Embedding, which realizes high-quality extension of LLM's context with strong flexibility and cost-effectiveness. Extensible embedding stand as an enhancement of typical token embedding, which represents the information for an extensible scope of context instead of a single token. By leveraging such compact input units of higher information density, the LLM can access to a vast scope of context even with a small context window. Extensible embedding is systematically optimized in architecture and training method, which leads to multiple advantages. 1) High flexibility of context extension, which flexibly supports ad-hoc extension of diverse context lengths. 2) Strong sample efficiency of training, which enables the embedding model to be learned in a cost-effective way. 3) Superior compatibility with the existing LLMs, where the extensible embedding can be seamlessly introduced as a plug-in component. Comprehensive evaluations on long-context language modeling and understanding tasks verify extensible embedding as an effective, efficient, flexible, and compatible method to extend the LLM's context.
Abstract:In this paper, we present a new embedding model, called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It can support more than 100 working languages, leading to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks. It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval, which provides a unified model foundation for real-world IR applications. It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. The effective training of M3-Embedding involves the following technical contributions. We propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, enabling a large batch size and high training throughput to ensure the discriminativeness of embeddings. To the best of our knowledge, M3-Embedding is the first embedding model which realizes such a strong versatility. The model and code will be publicly available at https://github.com/FlagOpen/FlagEmbedding.
Abstract:The most recent efforts in video matting have focused on eliminating trimap dependency since trimap annotations are expensive and trimap-based methods are less adaptable for real-time applications. Despite the latest tripmap-free methods showing promising results, their performance often degrades when dealing with highly diverse and unstructured videos. We address this limitation by introducing Adaptive Matting for Dynamic Videos, termed AdaM, which is a framework designed for simultaneously differentiating foregrounds from backgrounds and capturing alpha matte details of human subjects in the foreground. Two interconnected network designs are employed to achieve this goal: (1) an encoder-decoder network that produces alpha mattes and intermediate masks which are used to guide the transformer in adaptively decoding foregrounds and backgrounds, and (2) a transformer network in which long- and short-term attention combine to retain spatial and temporal contexts, facilitating the decoding of foreground details. We benchmark and study our methods on recently introduced datasets, showing that our model notably improves matting realism and temporal coherence in complex real-world videos and achieves new best-in-class generalizability. Further details and examples are available at https://github.com/microsoft/AdaM.
Abstract:Nowadays the world has entered into the digital age, in which the data analysis and visualization have become more and more important. In analogy to imaging the real object, we demonstrate that the computational ghost imaging can image the digital data to show their characteristics, such as periodicity. Furthermore, our experimental results show that the use of optical imaging methods to analyse data exhibits unique advantages, especially in anti-interference. The data analysis with computational ghost imaging can be well performed against strong noise, random amplitude and phase changes in the binarized signals. Such robust data data analysis and imaging has an important application prospect in big data analysis, meteorology, astronomy, economics and many other fields.
Abstract:Atomic partial charges are crucial parameters for Molecular Dynamics (MD) simulations, molecular mechanics calculations, and virtual screening, as they determine the electrostatic contributions to interaction energies. Current methods for calculating partial charges, however, are either slow and scale poorly with molecular size (quantum chemical methods) or unreliable (empirical methods). Here, we present a new charge derivation method based on Graph Nets---a set of update and aggregate functions that operate on molecular topologies and propagate information thereon---that could approximate charges derived from Density Functional Theory (DFT) calculations with high accuracy and an over 500-fold speed up.
Abstract:The success of supervised deep learning depends on the training labels. However, data labeling at pixel-level is very expensive, and people have been exploring synthetic data as an alternative. Even though it is easy to generate labels for synthetic data, the quality gap makes it challenging to transfer knowledge from synthetic data to real data. In this paper, we propose a novel technique, called cross-domain complementary learning that takes advantage of the rich variations of real data and the easily obtainable labels of synthetic data to learn multi-person part segmentation on real images without any human-annotated segmentation labels. To make sure the synthetic data and real data are aligned in a common latent space, we use an auxiliary task of human pose estimation to bridge the two domains. Without any real part segmentation training data, our method performs comparably to several supervised state-of-the-art approaches which require real part segmentation training data on Pascal-Person-Parts and COCO-DensePose datasets. We further demonstrate the generalizability of our method on predicting novel keypoints in the wild where no real data labels are available for the novel keypoints.