Abstract:The majority of human detection methods rely on the sensor using visible lights (e.g., RGB cameras) but such sensors are limited in scenarios with degraded vision conditions. In this paper, we present a multimodal human detection system that combines portable thermal cameras and single-chip mmWave radars. To mitigate the noisy detection features caused by the low contrast of thermal cameras and the multi-path noise of radar point clouds, we propose a Bayesian feature extractor and a novel uncertainty-guided fusion method that surpasses a variety of competing methods, either single-modal or multi-modal. We evaluate the proposed method on real-world data collection and demonstrate that our approach outperforms the state-of-the-art methods by a large margin.
Abstract:Medications often impose temporal constraints on everyday patient activity. Violations of such medical temporal constraints (MTCs) lead to a lack of treatment adherence, in addition to poor health outcomes and increased healthcare expenses. These MTCs are found in drug usage guidelines (DUGs) in both patient education materials and clinical texts. Computationally representing MTCs in DUGs will advance patient-centric healthcare applications by helping to define safe patient activity patterns. We define a novel taxonomy of MTCs found in DUGs and develop a novel context-free grammar (CFG) based model to computationally represent MTCs from unstructured DUGs. Additionally, we release three new datasets with a combined total of N = 836 DUGs labeled with normalized MTCs. We develop an in-context learning (ICL) solution for automatically extracting and normalizing MTCs found in DUGs, achieving an average F1 score of 0.62 across all datasets. Finally, we rigorously investigate ICL model performance against a baseline model, across datasets and MTC types, and through in-depth error analysis.
Abstract:Prescription medications often impose temporal constraints on regular health behaviors (RHBs) of patients, e.g., eating before taking medication. Violations of such medical temporal constraints (MTCs) can result in adverse effects. Detecting and predicting such violations before they occur can help alert the patient. We formulate the problem of modeling MTCs and develop a proof-of-concept solution, ActSafe, to predict violations of MTCs well ahead of time. ActSafe utilizes a context-free grammar based approach for extracting and mapping MTCs from patient education materials. It also addresses the challenges of accurately predicting RHBs central to MTCs (e.g., medication intake). Our novel behavior prediction model, HERBERT , utilizes a basis vectorization of time series that is generalizable across temporal scale and duration of behaviors, explicitly capturing the dependency between temporally collocated behaviors. Based on evaluation using a real-world RHB dataset collected from 28 patients in uncontrolled environments, HERBERT outperforms baseline models with an average of 51% reduction in root mean square error. Based on an evaluation involving patients with chronic conditions, ActSafe can predict MTC violations a day ahead of time with an average F1 score of 0.86.
Abstract:Electric vehicles (EVs) are being rapidly adopted due to their economic and societal benefits. Autonomous mobility-on-demand (AMoD) systems also embrace this trend. However, the long charging time and high recharging frequency of EVs pose challenges to efficiently managing EV AMoD systems. The complicated dynamic charging and mobility process of EV AMoD systems makes the demand and supply uncertainties significant when designing vehicle balancing algorithms. In this work, we design a data-driven distributionally robust optimization (DRO) approach to balance EVs for both the mobility service and the charging process. The optimization goal is to minimize the worst-case expected cost under both passenger mobility demand uncertainties and EV supply uncertainties. We then propose a novel distributional uncertainty sets construction algorithm that guarantees the produced parameters are contained in desired confidence regions with a given probability. To solve the proposed DRO AMoD EV balancing problem, we derive an equivalent computationally tractable convex optimization problem. Based on real-world EV data of a taxi system, we show that with our solution the average total balancing cost is reduced by 14.49%, and the average mobility fairness and charging fairness are improved by 15.78% and 34.51%, respectively, compared to solutions that do not consider uncertainties.
Abstract:In recent years, machine learning has achieved impressive results across different application areas. However, machine learning algorithms do not necessarily perform well on a new domain with a different distribution than its training set. Domain Adaptation (DA) is used to mitigate this problem. One approach of existing DA algorithms is to find domain invariant features whose distributions in the source domain are the same as their distribution in the target domain. In this paper, we propose to let the classifier that performs the final classification task on the target domain learn implicitly the invariant features to perform classification. It is achieved via feeding the classifier during training generated fake samples that are similar to samples from both the source and target domains. We call these generated samples domain-agnostic samples. To accomplish this we propose a novel variation of generative adversarial networks (GAN), called the MiddleGAN, that generates fake samples that are similar to samples from both the source and target domains, using two discriminators and one generator. We extend the theory of GAN to show that there exist optimal solutions for the parameters of the two discriminators and one generator in MiddleGAN, and empirically show that the samples generated by the MiddleGAN are similar to both samples from the source domain and samples from the target domain. We conducted extensive evaluations using 24 benchmarks; on the 24 benchmarks, we compare MiddleGAN against various state-of-the-art algorithms and outperform the state-of-the-art by up to 20.1\% on certain benchmarks.
Abstract:As more and more monitoring systems have been deployed to smart cities, there comes a higher demand for converting new human-specified requirements to machine-understandable formal specifications automatically. However, these human-specific requirements are often written in English and bring missing, inaccurate, or ambiguous information. In this paper, we present CitySpec, an intelligent assistant system for requirement specification in smart cities. CitySpec not only helps overcome the language differences brought by English requirements and formal specifications, but also offers solutions to those missing, inaccurate, or ambiguous information. The goal of this paper is to demonstrate how CitySpec works. Specifically, we present three demos: (1) interactive completion of requirements in CitySpec; (2) human-in-the-loop correction while CitySepc encounters exceptions; (3) online learning in CitySpec.
Abstract:Existing Domain Adaptation (DA) algorithms train target models and then use the target models to classify all samples in the target dataset. While this approach attempts to address the problem that the source and the target data are from different distributions, it fails to recognize the possibility that, within the target domain, some samples are closer to the distribution of the source domain than the distribution of the target domain. In this paper, we develop a novel DA algorithm, the Enforced Transfer, that deals with this situation. A straightforward but effective idea to deal with this dilemma is to use an out-of-distribution detection algorithm to decide if, during the testing phase, a given sample is closer to the distribution of the source domain, the target domain, or neither. In the first case, this sample is given to a machine learning classifier trained on source samples. In the second case, this sample is given to a machine learning classifier trained on target samples. In the third case, this sample is discarded as neither an ML model trained on source nor an ML model trained on target is suitable to classify it. It is widely known that the first few layers in a neural network extract low-level features, so the aforementioned approach can be extended from classifying samples in three different scenarios to classifying the samples' activations after an empirically determined layer in three different scenarios. The Enforced Transfer implements the idea. On three types of DA tasks, we outperform the state-of-the-art algorithms that we compare against.
Abstract:We present CityPM, a novel predictive monitoring system for smart cities, that continuously generates sequential predictions of future city states using Bayesian deep learning and monitors if the generated predictions satisfy city safety and performance requirements. We formally define a flowpipe signal to characterize prediction outputs of Bayesian deep learning models, and develop a new logic, named {Signal Temporal Logic with Uncertainty} (STL-U), for reasoning about the correctness of flowpipe signals. CityPM can monitor city requirements specified in STL-U such as "with 90% confidence level, the predicated air quality index in the next 10 hours should always be below 100". We also develop novel STL-U logic-based criteria to measure uncertainty for Bayesian deep learning. CityPM uses these logic-calibrated uncertainty measurements to select and tune the uncertainty estimation schema in deep learning models. We evaluate CityPM on three large-scale smart city case studies, including two real-world city datasets and one simulated city experiment. The results show that CityPM significantly improves the simulated city's safety and performance, and the use of STL-U logic-based criteria leads to improved uncertainty calibration in various Bayesian deep learning models.
Abstract:Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak.We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort.