Abstract:Recent evaluations of cross-domain text classification models aim to measure the ability of a model to obtain domain-invariant performance in a target domain given labeled samples in a source domain. The primary strategy for this evaluation relies on assumed differences between source domain samples and target domain samples in benchmark datasets. This evaluation strategy fails to account for the similarity between source and target domains, and may mask when models fail to transfer learning to specific target samples which are highly dissimilar from the source domain. We introduce Depth $F_1$, a novel cross-domain text classification performance metric. Designed to be complementary to existing classification metrics such as $F_1$, Depth $F_1$ measures how well a model performs on target samples which are dissimilar from the source domain. We motivate this metric using standard cross-domain text classification datasets and benchmark several recent cross-domain text classification models, with the goal of enabling in-depth evaluation of the semantic generalizability of cross-domain text classification models.
Abstract:Large language models (LLMs) have been shown to be proficient in correctly answering questions in the context of online discourse. However, the study of using LLMs to model human-like answers to fact-driven social media questions is still under-explored. In this work, we investigate how LLMs model the wide variety of human answers to fact-driven questions posed on several topic-specific Reddit communities, or subreddits. We collect and release a dataset of 409 fact-driven questions and 7,534 diverse, human-rated answers from 15 r/Ask{Topic} communities across 3 categories: profession, social identity, and geographic location. We find that LLMs are considerably better at modeling highly-rated human answers to such questions, as opposed to poorly-rated human answers. We present several directions for future research based on our initial findings.
Abstract:Stance detection on social media is challenging for Large Language Models (LLMs), as emerging slang and colloquial language in online conversations often contain deeply implicit stance labels. Chain-of-Thought (COT) prompting has recently been shown to improve performance on stance detection tasks -- alleviating some of these issues. However, COT prompting still struggles with implicit stance identification. This challenge arises because many samples are initially challenging to comprehend before a model becomes familiar with the slang and evolving knowledge related to different topics, all of which need to be acquired through the training data. In this study, we address this problem by introducing COT Embeddings which improve COT performance on stance detection tasks by embedding COT reasonings and integrating them into a traditional RoBERTa-based stance detection pipeline. Our analysis demonstrates that 1) text encoders can leverage COT reasonings with minor errors or hallucinations that would otherwise distort the COT output label. 2) Text encoders can overlook misleading COT reasoning when a sample's prediction heavily depends on domain-specific patterns. Our model achieves SOTA performance on multiple stance detection datasets collected from social media.
Abstract:The popularity of transformer-based text embeddings calls for better statistical tools for measuring distributions of such embeddings. One such tool would be a method for ranking texts within a corpus by centrality, i.e. assigning each text a number signifying how representative that text is of the corpus as a whole. However, an intrinsic center-outward ordering of high-dimensional text representations is not trivial. A statistical depth is a function for ranking k-dimensional objects by measuring centrality with respect to some observed k-dimensional distribution. We adopt a statistical depth to measure distributions of transformer-based text embeddings, transformer-based text embedding (TTE) depth, and introduce the practical use of this depth for both modeling and distributional inference in NLP pipelines. We first define TTE depth and an associated rank sum test for determining whether two corpora differ significantly in embedding space. We then use TTE depth for the task of in-context learning prompt selection, showing that this approach reliably improves performance over statistical baseline approaches across six text classification tasks. Finally, we use TTE depth and the associated rank sum test to characterize the distributions of synthesized and human-generated corpora, showing that five recent synthetic data augmentation processes cause a measurable distributional shift away from associated human-generated text.
Abstract:Amidst the sharp rise in the evaluation of large language models (LLMs) on various tasks, we find that semantic textual similarity (STS) has been under-explored. In this study, we show that STS can be cast as a text generation problem while maintaining strong performance on multiple STS benchmarks. Additionally, we show generative LLMs significantly outperform existing encoder-based STS models when characterizing the semantic similarity between two texts with complex semantic relationships dependent on world knowledge. We validate this claim by evaluating both generative LLMs and existing encoder-based STS models on three newly collected STS challenge sets which require world knowledge in the domains of Health, Politics, and Sports. All newly collected data is sourced from social media content posted after May 2023 to ensure the performance of closed-source models like ChatGPT cannot be credited to memorization. Our results show that, on average, generative LLMs outperform the best encoder-only baselines by an average of 22.3% on STS tasks requiring world knowledge. Our results suggest generative language models with STS-specific prompting strategies achieve state-of-the-art performance in complex, domain-specific STS tasks.
Abstract:Social media sites have become a popular platform for individuals to seek and share health information. Despite the progress in natural language processing for social media mining, a gap remains in analyzing health-related texts on social discourse in the context of events. Event-driven analysis can offer insights into different facets of healthcare at an individual and collective level, including treatment options, misconceptions, knowledge gaps, etc. This paper presents a paradigm to characterize health-related information-seeking in social discourse through the lens of events. Events here are board categories defined with domain experts that capture the trajectory of the treatment/medication. To illustrate the value of this approach, we analyze Reddit posts regarding medications for Opioid Use Disorder (OUD), a critical global health concern. To the best of our knowledge, this is the first attempt to define event categories for characterizing information-seeking in OUD social discourse. Guided by domain experts, we develop TREAT-ISE, a novel multilabel treatment information-seeking event dataset to analyze online discourse on an event-based framework. This dataset contains Reddit posts on information-seeking events related to recovery from OUD, where each post is annotated based on the type of events. We also establish a strong performance benchmark (77.4% F1 score) for the task by employing several machine learning and deep learning classifiers. Finally, we thoroughly investigate the performance and errors of ChatGPT on this task, providing valuable insights into the LLM's capabilities and ongoing characterization efforts.
Abstract:Prescription medications often impose temporal constraints on regular health behaviors (RHBs) of patients, e.g., eating before taking medication. Violations of such medical temporal constraints (MTCs) can result in adverse effects. Detecting and predicting such violations before they occur can help alert the patient. We formulate the problem of modeling MTCs and develop a proof-of-concept solution, ActSafe, to predict violations of MTCs well ahead of time. ActSafe utilizes a context-free grammar based approach for extracting and mapping MTCs from patient education materials. It also addresses the challenges of accurately predicting RHBs central to MTCs (e.g., medication intake). Our novel behavior prediction model, HERBERT , utilizes a basis vectorization of time series that is generalizable across temporal scale and duration of behaviors, explicitly capturing the dependency between temporally collocated behaviors. Based on evaluation using a real-world RHB dataset collected from 28 patients in uncontrolled environments, HERBERT outperforms baseline models with an average of 51% reduction in root mean square error. Based on an evaluation involving patients with chronic conditions, ActSafe can predict MTC violations a day ahead of time with an average F1 score of 0.86.