Abstract:In this paper, we develop an LLM-powered framework for the curation and evaluation of emerging opinion mining in online health communities. We formulate emerging opinion mining as a pairwise stance detection problem between (title, comment) pairs sourced from Reddit, where post titles contain emerging health-related claims on a topic that is not predefined. The claims are either explicitly or implicitly expressed by the user. We detail (i) a method of claim identification -- the task of identifying if a post title contains a claim and (ii) an opinion mining-driven evaluation framework for stance detection using LLMs. We facilitate our exploration by releasing a novel test dataset, Long COVID-Stance, or LC-stance, which can be used to evaluate LLMs on the tasks of claim identification and stance detection in online health communities. Long Covid is an emerging post-COVID disorder with uncertain and complex treatment guidelines, thus making it a suitable use case for our task. LC-Stance contains long COVID treatment related discourse sourced from a Reddit community. Our evaluation shows that GPT-4 significantly outperforms prior works on zero-shot stance detection. We then perform thorough LLM model diagnostics, identifying the role of claim type (i.e. implicit vs explicit claims) and comment length as sources of model error.
Abstract:Amidst the sharp rise in the evaluation of large language models (LLMs) on various tasks, we find that semantic textual similarity (STS) has been under-explored. In this study, we show that STS can be cast as a text generation problem while maintaining strong performance on multiple STS benchmarks. Additionally, we show generative LLMs significantly outperform existing encoder-based STS models when characterizing the semantic similarity between two texts with complex semantic relationships dependent on world knowledge. We validate this claim by evaluating both generative LLMs and existing encoder-based STS models on three newly collected STS challenge sets which require world knowledge in the domains of Health, Politics, and Sports. All newly collected data is sourced from social media content posted after May 2023 to ensure the performance of closed-source models like ChatGPT cannot be credited to memorization. Our results show that, on average, generative LLMs outperform the best encoder-only baselines by an average of 22.3% on STS tasks requiring world knowledge. Our results suggest generative language models with STS-specific prompting strategies achieve state-of-the-art performance in complex, domain-specific STS tasks.