Abstract:To optimize large Transformer model training, efficient parallel computing and advanced data management are essential. However, current methods often assume a stable and uniform training workload, neglecting imbalances in data sampling and packing that can impede performance. Specifically, data sampling imbalance arises from uneven sequence length distribution of the training data, while data packing imbalance stems from the discrepancy between the linear memory complexity and quadratic time complexity of the attention mechanism. To address these imbalance issues, we develop Hydraulis, which jointly optimizes the parallel strategies and data assignment. For one thing, we introduce large model training with dynamic heterogeneous parallel strategies in response to the sequence length variations within and across training iterations. For another, we devise a two-stage data assignment approach, which strikes a good balance in terms of the training workloads both within and across model replicas. Empirical results demonstrate that Hydraulis outperforms existing systems by 1.32-2.66 times.
Abstract:Face recognition pipelines have been widely deployed in various mission-critical systems in trust, equitable and responsible AI applications. However, the emergence of adversarial attacks has threatened the security of the entire recognition pipeline. Despite the sheer number of attack methods proposed for crafting adversarial examples in both digital and physical forms, it is never an easy task to assess the real threat level of different attacks and obtain useful insight into the key risks confronted by face recognition systems. Traditional attacks view imperceptibility as the most important measurement to keep perturbations stealthy, while we suspect that industry professionals may possess a different opinion. In this paper, we delve into measuring the threat brought about by adversarial attacks from the perspectives of the industry and the applications of face recognition. In contrast to widely studied sophisticated attacks in the field, we propose an effective yet easy-to-launch physical adversarial attack, named AdvColor, against black-box face recognition pipelines in the physical world. AdvColor fools models in the recognition pipeline via directly supplying printed photos of human faces to the system under adversarial illuminations. Experimental results show that physical AdvColor examples can achieve a fooling rate of more than 96% against the anti-spoofing model and an overall attack success rate of 88% against the face recognition pipeline. We also conduct a survey on the threats of prevailing adversarial attacks, including AdvColor, to understand the gap between the machine-measured and human-assessed threat levels of different forms of adversarial attacks. The survey results surprisingly indicate that, compared to deliberately launched imperceptible attacks, perceptible but accessible attacks pose more lethal threats to real-world commercial systems of face recognition.
Abstract:Previous work has shown that well-crafted adversarial perturbations can threaten the security of video recognition systems. Attackers can invade such models with a low query budget when the perturbations are semantic-invariant, such as StyleFool. Despite the query efficiency, the naturalness of the minutia areas still requires amelioration, since StyleFool leverages style transfer to all pixels in each frame. To close the gap, we propose LocalStyleFool, an improved black-box video adversarial attack that superimposes regional style-transfer-based perturbations on videos. Benefiting from the popularity and scalably usability of Segment Anything Model (SAM), we first extract different regions according to semantic information and then track them through the video stream to maintain the temporal consistency. Then, we add style-transfer-based perturbations to several regions selected based on the associative criterion of transfer-based gradient information and regional area. Perturbation fine adjustment is followed to make stylized videos adversarial. We demonstrate that LocalStyleFool can improve both intra-frame and inter-frame naturalness through a human-assessed survey, while maintaining competitive fooling rate and query efficiency. Successful experiments on the high-resolution dataset also showcase that scrupulous segmentation of SAM helps to improve the scalability of adversarial attacks under high-resolution data.
Abstract:Monocular 3D face reconstruction plays a crucial role in avatar generation, with significant demand in web-related applications such as generating virtual financial advisors in FinTech. Current reconstruction methods predominantly rely on deep learning techniques and employ 2D self-supervision as a means to guide model learning. However, these methods encounter challenges in capturing the comprehensive 3D structural information of the face due to the utilization of 2D images for model training purposes. To overcome this limitation and enhance the reconstruction of 3D structural features, we propose an innovative approach that integrates existing 2D features with 3D features to guide the model learning process. Specifically, we introduce the 3D-ID Loss, which leverages the high-dimensional structure features extracted from a Spectral-Based Graph Convolution Encoder applied to the facial mesh. This approach surpasses the sole reliance on the 3D information provided by the facial mesh vertices coordinates. Our model is trained using 2D-3D data pairs from a combination of datasets and achieves state-of-the-art performance on the NoW benchmark.
Abstract:Unsupervised question answering is a promising yet challenging task, which alleviates the burden of building large-scale annotated data in a new domain. It motivates us to study the unsupervised multiple-choice question answering (MCQA) problem. In this paper, we propose a novel framework designed to generate synthetic MCQA data barely based on contexts from the universal domain without relying on any form of manual annotation. Possible answers are extracted and used to produce related questions, then we leverage both named entities (NE) and knowledge graphs to discover plausible distractors to form complete synthetic samples. Experiments on multiple MCQA datasets demonstrate the effectiveness of our method.
Abstract:Traditional recommender systems are typically passive in that they try to adapt their recommendations to the user's historical interests. However, it is highly desirable for commercial applications, such as e-commerce, advertisement placement, and news portals, to be able to expand the users' interests so that they would accept items that they were not originally aware of or interested in to increase customer interactions. In this paper, we present Influential Recommender System (IRS), a new recommendation paradigm that aims to proactively lead a user to like a given objective item by progressively recommending to the user a sequence of carefully selected items (called an influence path). We propose the Influential Recommender Network (IRN), which is a Transformer-based sequential model to encode the items' sequential dependencies. Since different people react to external influences differently, we introduce the Personalized Impressionability Mask (PIM) to model how receptive a user is to external influence to generate the most effective influence path for the user. To evaluate IRN, we design several performance metrics to measure whether or not the influence path can smoothly expand the user interest to include the objective item while maintaining the user's satisfaction with the recommendation. Experimental results show that IRN significantly outperforms the baseline recommenders and demonstrates its capability of influencing users' interests.
Abstract:The interpretability of Convolutional Neural Networks (CNNs) is an important topic in the field of computer vision. In recent years, works in this field generally adopt a mature model to reveal the internal mechanism of CNNs, helping to understand CNNs thoroughly. In this paper, we argue the working mechanism of CNNs can be revealed through a totally different interpretation, by comparing the communication systems and CNNs. This paper successfully obtained the corresponding relationship between the modules of the two, and verified the rationality of the corresponding relationship with experiments. Finally, through the analysis of some cutting-edge research on neural networks, we find the inherent relation between these two tasks can be of help in explaining these researches reasonably, as well as helping us discover the correct research direction of neural networks.
Abstract:The shrinking of transistor geometries as well as the increasing complexity of integrated circuits, significantly aggravate nonlinear design behavior. This demands accurate and fast circuit simulation to meet the design quality and time-to-market constraints. The existing circuit simulators which utilize lookup tables and/or closed-form expressions are either slow or inaccurate in analyzing the nonlinear behavior of designs with billions of transistors. To address these shortcomings, we present NN-PARS, a neural network (NN) based and parallelized circuit simulation framework with optimized event-driven scheduling of simulation tasks to maximize concurrency, according to the underlying GPU parallel processing capabilities. NN-PARS replaces the required memory queries in traditional techniques with parallelized NN-based computation tasks. Experimental results show that compared to a state-of-the-art current-based simulation method, NN-PARS reduces the simulation time by over two orders of magnitude in large circuits. NN-PARS also provides high accuracy levels in signal waveform calculations, with less than $2\%$ error compared to HSPICE.
Abstract:In recent years, deep learning has shown impressive performance on many tasks. However, recent researches showed that deep learning systems are vulnerable to small, specially crafted perturbations that are imperceptible to humans. Images with such perturbations are the so called adversarial examples, which have proven to be an indisputable threat to the DNN based applications. The lack of better understanding of the DNNs has prevented the development of efficient defenses against adversarial examples. In this paper, we propose a two-stream architecture to protect CNN from attacking by adversarial examples. Our model draws on the idea of "two-stream" which commonly used in the security field, and successfully defends different kinds of attack methods by the differences of "high-resolution" and "low-resolution" networks in feature extraction. We provide a reasonable interpretation on why our two-stream architecture is difficult to defeat, and show experimentally that our method is hard to defeat with state-of-the-art attacks. We demonstrate that our two-stream architecture is robust to adversarial examples built by currently known attacking algorithms.
Abstract:Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples.